题目描述:
一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。
解题思路:
典型的动态规划题,我们可以将求跳到n级台阶的问题转换为求跳到(n-1)级台阶跳法数和跳到(n-2)级台阶的跳法数
dp方程:dp[n] = dp[n-1] + dp[n-2]
实现代码:
public class Solution {
//非递归解法
public int JumpFloor(int target) {
if(target == 0 || target == 1 || target == 2){
return target;
}
int[] nums = new int[target+1];
nums[0] = 0;
nums[1] = 1;
nums[2] = 2;
for(int i = 3; i <= target; i++){
nums[i] = nums[i-1] + nums[i-2];
}
return nums[target];
}
//递归解法(不推荐),需要重复计算很多中间结果
public int JumpFloor(int target) {
if(target == 0 || target == 1 || target == 2){
return target;
}
return JumpFloor(target-1) + JumpFloor(target-2);
}
}