ElGamal密码及其安全性证明

这篇博客探讨了ElGamal密码体制在Diffie-Hellman假设下的IND-CPA安全性。介绍了Diffie-Hellman协议、ElGamal加密方案,并详细解释了Compute Diffie-Hellman Assumption和Decision Diffie-Hellman Assumption。内容还涵盖了ElGamal如何在DDH下保证加密安全性,以及从CPA到CCA的安全性提升,包括不同攻击模式和安全目标的研究进展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ElGamal 在 DDH下的 IND-CPA 安全性

有关DDH和ElGamal

Diffie-Hellman Protocol

有限循环群 G \mathbb{G} G ( e . g G = ( Z p ) ∗ ) \left(e.g\quad G=\left(Z_{p}\right)^{*}\right) (e.gG=(Zp)),其阶数为 n n n

G G G中取生成元 g g g: < g > = { 1 , g , g 2 , g 3 , … , g n − 1 } <g>=\left\{1, \mathrm{g}, \mathrm{g}^{2}, \mathrm{g}^{3}, \ldots, \mathrm{g}^{\mathrm{n}-1}\right\} <g>={ 1,g,g2,g3,,gn1},那么Diffie-Hellman Protocol如下图所示:

在这里插入图片描述

通过图述方式,Alice和Bob可以共享密钥 k A B k_{AB} kAB

ElGamal体制

ElGamal是基于Diffie-Hellman Protocal的公钥加密方案。其同样基于有限循环群 G \mathbb{G} G和群中一固定的生成元 g g g,那么ElGamal可由下图描述:

在这里插入图片描述

(个人认为这个图比我在很多地方看到的文字叙述更容易理解。)

其中Enc,Dec是认证加密系统的加密和解密算法(比如对称加密方法),Gen是密钥生成算法。在实际应用时,Gen一般为一个Hashing Function(哈希函数),即 k ← H a s h ( g b , g a b ) k←Hash(g^b,g^{ab}) kHash(gb,gab)

Compute Diffie-Hellman Assumption

在上图,pk为我们选择的公钥,而其实你会发现 g a g^a ga. g b g^b gb都是明文形式给出的。基于 g , g a , g b g, g^a,g^b g,gagb,得到 g a b g^{ab} gab是计算困难的, 这就是Compute Diffie-Hellman Assumption(CDH)。

Decision Diffie-Hellman Assumption

考虑阶数为 q q

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值