一棵有N个节点的树,每个节点对应1个编号及1个权值,有2种不同的操作。
操作1:S x y z,表示如果编号为x的节点的权值 < y,则将节点x的权值加上z。(Single)
操作2:A x y z,表示如果编号为x的节点以及其所有子节点的权值平均值 < y,则将节点x及其所有子节点的权值加上z。(All)
给出树节点之间的关系,进行M次操作,问所有操作完成后,各个节点的权值为多少?
节点的编号为0 - N - 1,根节点的编号为0,并且初始情况下,根节点的权值也是0。
用dfs序表示一棵树的话,就很容易找到一个结点的子树啦
先把子树数量保存下来,然后套线段树的时候,左端点视为dfs序,右端点视为dfs序+子树数量-1,然后就可以用正常的线段树啦~
真是一道非常入门的好题!
极其新手友好啊哈哈哈~
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 50010;
ll n,m,w[N],a[N],ans[N<<2],tag[N<<2],df[N],son[N],dfstime=0;
vector<int> g[N];
void dfs(int u){
df[u] = ++dfstime;
son[u] = 1;
for(int i = 0;i < g[u].size();i ++){
dfs(g[u][i]);
son[u] += son[g[u][i]];
}
}
inline ll ls(ll x){return x<<1;}
inline ll rs(ll x){return x<<1|1;}
inline void push_up(ll p){
ans[p] = ans[ls(p)] + ans[rs(p)];
}
void build(ll p,ll l,ll r){
tag[p] = 0;
if(l == r){ans[p]=a[l];return ;}
ll mid = (l+r)>>1;
build(ls(p),l,mid);
build(rs(p),mid+1,r);
push_up(p);
}
inline void f(ll p,ll l,ll r,ll k){
tag[p] = tag[p]+k;
ans[p] = ans[p]+k*(r-l+1);
}
inline void push_down(ll p,ll l,ll r){
ll mid = (l+r)>>1;
f(ls(p),l,mid,tag[p]);
f(rs(p),mid+1,r,tag[p]);
tag[p]=0;
}
inline void update(ll nl,ll nr,ll l,ll r,ll p,ll k){
if(nl <= l && r <= nr){
ans[p] += k*(r-l+1);
tag[p] += k;
return ;
}
push_down(p,l,r);
ll mid = (l+r)>>1;
if(nl <= mid)update(nl,nr,l,mid,ls(p),k);
if(nr > mid) update(nl,nr,mid+1,r,rs(p),k);
push_up(p);
}
ll query(ll q_x,ll q_y,ll l,ll r,ll p){
ll res = 0;
if(q_x <= l&&r <= q_y) return ans[p];
ll mid = (l+r)>>1;
push_down(p,l,r);
if(q_x <= mid) res += query(q_x,q_y,l,mid,ls(p));
if(q_y > mid) res += query(q_x,q_y,mid+1,r,rs(p));
return res;
}
int main(){
ll pp;
while(scanf("%lld%lld",&n,&pp) == 2){
ll u,x,y,z;
char op;
for(int i = 1;i < n;i ++){
scanf("%lld%lld",&u,&w[i]);
g[u].push_back(i);
}
dfs(0);
for(int i = 0;i < n;i ++)
a[df[i]] = w[i];
build(1,1,n);
while(pp --){
scanf("\n%c%lld%lld%lld",&op,&x,&y,&z);
if(op == 'S'){
if(query(df[x],df[x],1,n,1) < y)
update(df[x],df[x],1,n,1,z);
}
else{
if(query(df[x],son[x]+df[x]-1,1,n,1) < son[x]*y)
update(df[x],df[x]+son[x]-1,1,n,1,z);
}
}
for(int i = 0;i < n;i ++) cout << query(df[i],df[i],1,n,1) << endl;
}
return 0;
}