MySQL-事务

事务

事务(Transaction)是由一系列对系统中数据进行访问与更新的操作所组成的一个程序执行逻辑单元。

事务是由多个对数据的操作的语句所组成的一个操作单元,要么都执行,要么都不执行【原子性】。

  • 事务的语法
  • 事务的特性
  • 事务并发问题
  • 事务隔离级别
  • 不同隔离级别的锁的情况(了解)
  • 隐式提交(了解)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-120097Ub-1598277995726)(D:\学习笔记\放在typora里的图片\1593698948200.png)]

1. 事务的语法

start transaction; / begin;
commit; -- 确认当前修改
rollback; -- 放弃当前修改

2. 事务的特性:ACID

原子性 Atomicity

事务的原子性是指事务必须是一个原子的操作序列单元。事务中包含的各项操作在一次执行过程中,只允许出现两种状态之一。

  • 全部执行成功
  • 全部执行失败

事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节。事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有发生一样。也就是说事务是一个不可分割的整体,就像化学中学过的原子,是物质构成的基本单位

一致性 Consistency

事务的一致性是指事务的执行不能破坏数据库数据的完整性和一致性,一个事务在执行之前和执行之后,数据库都必须处以一致性状态。

比如:如果从A账户转账到B账户,不可能A账户扣了钱,而B账户没有加钱。

隔离性 Isolation

事务的隔离性是指在并发环境中,并发的事务是互相隔离的。也就是说,不同的事务并发操作相同的数据时,每个事务都有各自完整的数据空间

一个事务内部的操作及使用的数据对其它并发事务是隔离的,并发执行的各个事务是不能互相干扰的。

隔离性分4个级别。

###持久性 Duration

事务的持久性是指事务一旦提交后,数据库中的数据必须被永久的保存下来。即使服务器系统崩溃或服务器宕机等故障。只要数据库重新启动,那么一定能够将其恢复到事务成功结束后的状态。

##3. 事务的并发问题

  • 脏读:读取到了没有提交的数据。事务A读取了事务B更新的数据,然后B回滚操作,那么A读取到的数据是脏数据。
  • 不可重复读:同一条命令返回不同的结果集(更新)。事务 A 多次读取同一数据,事务 B 在事务A多次读取的过程中,对数据作了更新并提交,导致事务A多次读取同一数据时,结果不一致。
  • 幻读:重复查询的过程中,数据就发生了量的变化(insert, delete)。

4. 事务隔离级别

RU,RC,RR,S

事务隔离级别脏 读不可重复读幻 读
读未提交(READ_UNCOMMITTED)允许允许允许
读已提交(READ_COMMITTED)禁止允许允许
可重复读(REPEATABLE_READ)禁止禁止可能会
顺序读(SERIALIZABLE)禁止禁止禁止

四种事务隔离级别从上往下,级别越高,并发性越差,安全性就越来越高。
一般数据默认级别是读已提交(RC)或可重复读(RR)。

查看当前会话中事务的隔离级别:

mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set, 1 warning (0.93 sec)

设置当前会话中的事务隔离级别:

mysql> set session transaction isolation level read uncommitted;
Query OK, 0 rows affected (0.00 sec)

读未提交(RU)

读未提交,该隔离级别允许脏读取,其隔离级别是最低的。换句话说,如果一个事务正在处理某一数据,并对其进行了更新,但同时尚未完成事务,因此还没有提交事务;而以此同时,允许另一个事务也能够访问该数据。

脏读示例:

在事务A和事务B同时执行时可能会出现如下场景:

时间事务A(存款)事务B(取款)
T1开始事务——
T2——开始事务
T3——查询余额(1000元)
T4——取出1000元(余额0元)
T5查询余额(0元)——
T6——撤销事务(余额恢复1000元)
T7存入500元(余额500元)——
T8提交事务——

余额应该为1500元才对。请看T5时间点,事务A此时查询的余额为0,这个数据就是脏数据,它是事务B造成的,很明显是事务没有进行隔离造成的。

读已提交(RC)

读已提交是不同的事务执行的时候只能获取到已经提交的数据。
这样就不会出现上面的脏读的情况了。但是在同一个事务中执行同一个读取,结果不一致。所以RC解决了脏读问题,但是并没有解决不可重复读问题。

不可重复读示例:

时间事务A(存款)事务B(取款)
T1开始事务——
T2——开始事务
T3——查询余额(1000元)
T4查询余额(1000元)——
T5——取出1000元(余额0元)
T6——提交事务
T7查询余额(0元)——
T8提交事务——

事务A其实除了查询两次以外,其它什么事情都没做,结果钱就从1000变成0了,这就是不可重复读的问题。

可重复读(RR)

可重复读就是保证在事务处理过程中,多次读取同一个数据时,该数据的值和事务开始时刻是一致的。因此该事务级别限制了不可重复读和脏读,但是有可能出现幻读的数据。

幻读

幻读就是指同样的事务操作,在前后两个时间段内执行对同一个数据项的读取,可能出现不一致的结果。

诡异的更新事件

时间事务A事务B
T1开始事务——
T2查询当前所有数据开始事务
T3——插入一条数据
T4查询当前所有数据提交事务
T5进行范围修改——
T6查询当前所有数据——
T7提交事务——

可串行化/顺序读(S)

顺序读是最严格的事务隔离级别。它要求所有的事务排队顺序执行,即事务只能一个接一个地处理,不能并发。

5. 不同的隔离级别的锁的情况

  1. 读未提交(RU): **有行级的锁,没有间隙锁。**它与RC的区别是能够查询到未提交的数据。
  2. 读已提交(RC):**有行级的锁,没有间隙锁。**读不到没有提交的数据。
  3. 可重复读(RR):有行级的锁,也有间隙锁,每次读取的数据都是一样的,并且没有幻读的情况。
  4. 序列化(S):有行级锁,也有间隙锁,读表的时候,就已经上锁了

6.隐式提交:DDL

DQL:查询语句

DML:写操作(添加,删除,修改)

DDL:定义语句(建库,建表,修改表,索引操作,存储过程,视图)

DCL:控制语言(给用户授权,或删除授权)

DDL(Data Define Language):都是隐式提交。

隐式提交:执行这种语句相当于执行commit;

DDL文档:

https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html

)

DCL:控制语言(给用户授权,或删除授权)

DDL(Data Define Language):都是隐式提交。

隐式提交:执行这种语句相当于执行commit;

DDL文档:

https://dev.mysql.com/doc/refman/5.7/en/implicit-commit.html

在探索智慧旅游的新纪元中,一个集科技、创新与服务于一体的整体解决方案正悄然改变着我们的旅行方式。智慧旅游,作为智慧城市的重要分支,旨在通过新一代信息技术,如云计算、大数据、物联网等,为游客、旅游企业及政府部门提供无缝对接、高效互动的旅游体验与管理模式。这一方案不仅重新定义了旅游行业的服务标准,更开启了旅游业数字化转型的新篇章。 智慧旅游的核心在于“以人为本”,它不仅仅关注技术的革新,更注重游客体验的提升。从游前的行程规划、信息查询,到游中的智能导航、个性化导览,再到游后的心情分享、服务评价,智慧旅游通过构建“一云多屏”的服务平台,让游客在旅游的全过程中都能享受到便捷、个性化的服务。例如,游客可以通过手机APP轻松定制专属行程,利用智能语音导览深入了解景点背后的故事,甚至通过三维GIS地图实现虚拟漫游,提前感受目的地的魅力。这些创新服务不仅增强了游客的参与感和满意度,也让旅游变得更加智能化、趣味化。 此外,智慧旅游还为旅游企业和政府部门带来了前所未有的管理变革。通过大数据分析,旅游企业能够精准把握市场动态,实现旅游产品的精准营销和个性化推荐,从而提升市场竞争力。而政府部门则能利用智慧旅游平台实现对旅游资源的科学规划和精细管理,提高监管效率和质量。例如,通过实时监控和数据分析,政府可以迅速应对旅游高峰期的客流压力,有效预防景区超载,保障游客安全。同时,智慧旅游还促进了跨行业、跨部门的数据共享与协同合作,为旅游业的可持续发展奠定了坚实基础。总之,智慧旅游以其独特的魅力和无限潜力,正引领着旅游业迈向一个更加智慧、便捷、高效的新时代。
内容概要:本文详细介绍了大模型的发展现状与未来趋势,尤其聚焦于DeepSeek这一创新应用。文章首先回顾了人工智能的定义、分类及其发展历程,指出从摩尔定律到知识密度提升的转变,强调了大模型知识密度的重要性。随后,文章深入探讨了DeepSeek的发展路径及其核心价值,包括其推理模型、思维链技术的应用及局限性。此外,文章展示了DeepSeek在多个行业的应用场景,如智能客服、医疗、金融等,并分析了DeepSeek如何赋能个人发展,具体体现在公文写作、文档处理、知识搜索、论文写作等方面。最后,文章展望了大模型的发展趋势,如通用大模型与垂域大模型的协同发展,以及本地部署小模型成为主流应用渠道的趋势。 适合人群:对人工智能和大模型技术感兴趣的从业者、研究人员及希望利用DeepSeek提升工作效率的个人用户。 使用场景及目标:①了解大模型技术的最新进展和发展趋势;②掌握DeepSeek在不同领域的具体应用场景和操作方法;③学习如何通过DeepSeek提升个人在公文写作、文档处理、知识搜索、论文写作等方面的工作效率;④探索大模型在特定行业的应用潜力,如医疗、金融等领域。 其他说明:本文不仅提供了理论知识,还结合实际案例,详细介绍了DeepSeek在各个场景下的应用方式,帮助读者更好地理解和应用大模型技术。同时,文章也指出了当前大模型技术面临的挑战,如模型的局限性和数据安全问题,鼓励读者关注技术的持续改进和发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值