- 博客(12)
- 收藏
- 关注
原创 LLM技术提示词工程优化
摘要:本文系统探讨了大型语言模型(LLM)提示词工程的优化方法论。从提示词结构设计、内容-格式集成优化、评估指标体系构建和迭代流程四个维度,提出了层次化指令设计、上下文密度优化、结构化格式规范等关键技术。重点介绍了进化算法在自动化提示词优化中的应用,以及多维度评估指标体系的构建方法。通过数据分析、代码生成等实践案例,验证了该方法在提升输出质量(准确率提升22%)、格式合规性(达98%)等方面的显著效果。研究为释放LLM潜力提供了系统化的工程实践指导,并展望了多模型适配、端到端自动化等未来发展方向。
2026-01-12 14:05:43
1004
原创 MySQL与PostgreSQL研究
MySQL的InnoDB引擎在简单事务处理上响应速度更快(如单表主键查询测试中,MySQL 8.0平均响应时间为0.8ms,而PostgreSQL 15为1.2ms),但复杂事务处理时,PostgreSQL的MVCC机制提供了更好的并发控制和数据一致性保障。:在OLTP场景下,MySQL在简单查询和高并发读写方面表现更优,但PostgreSQL在处理复杂事务和长事务时性能更稳定,特别是在高并发写入场景下,PostgreSQL的冲突重试率比MySQL低60%。
2026-01-12 09:36:38
682
原创 深入理解PyTorch与TensorFlow在自然语言处理中的工程实践与优化策略
本文对比分析了PyTorch与TensorFlow在NLP领域的技术实现差异。研究显示,PyTorch凭借动态计算图和HuggingFace生态,在研究和原型开发阶段优势显著,其FlashAttention优化可提升长序列处理效率4-7倍;而TensorFlow通过静态图优化和MQA/GQA技术,在生产部署中表现更优,推理阶段内存占用减少75%。两种框架在模型构建、训练效率和部署方案上形成互补:PyTorch适合快速迭代的研究场景,TensorFlow则更适配高并发生产环境。建议开发者根据任务规模(小型模型
2026-01-09 18:00:43
499
原创 开源大模型深度研究报告:LLaMA 2_3、Qwen与DeepSeek技术对比分析
摘要 本研究对比分析了2025年三大开源大模型LLaMA 2/3、Qwen和DeepSeek的技术特点。LLaMA 3采用优化的Transformer架构和分组查询注意力机制,显著提升推理效率;Qwen 3创新性地引入混合专家架构和可控思维模式切换机制;DeepSeek-R1则通过稀疏MoE架构和强化学习训练实现高效推理。在训练数据方面,三大模型分别使用15万亿、36万亿和超大规模的多语言语料。研究为模型选择和应用部署提供了系统性技术参考,展示了开源大模型在架构创新、训练方法和多语言处理方面的最新进展。
2026-01-09 17:58:32
674
原创 RAG检索增强生成技术与Spring AI、LangChain框架深度解析
摘要 RAG(检索增强生成)技术通过结合信息检索与文本生成,有效解决大模型的知识过时、幻觉输出等问题。其架构包含离线知识库构建(文档加载、分割、向量编码存储)和在线问答推理(问题向量化、相似检索、增强生成)两大阶段。Spring AI作为企业级AI开发框架,深度集成Spring生态,适合需要事务一致性、安全合规的场景;LangChain则以其模块化设计支持多模型适配,适用于快速原型开发和复杂AI流程构建。2024年文档预处理技术取得重要进展,如Late Chunking和语义分割技术,提高了检索准确性。向量
2026-01-08 10:20:53
961
原创 分布式系统核心理论与实践
Raft是由斯坦福大学的Diego Ongaro和John Ousterhout于2013年提出的一种分布式一致性算法,旨在替代Paxos协议,提供一种更易于理解、实现和部署的分布式共识机制。BASE理论是对CAP理论的一种实践性扩展,由数据一致性领域学者提出,强调在分布式系统中**基本可用(basically available)、软状态(soft state)和最终一致性(eventually consistent)**的特性。在需要更高可靠性的场景,可考虑UUID或其他分布式ID生成方案。
2026-01-08 09:58:27
945
原创 JVM核心与面试重点
无论是初级开发者,还是经验丰富的资深工程师,对JVM知识的深入理解,不仅能帮助我们在面试中脱颖而出,更能在实际工作中,优化程序性能,解决各种复杂的线上问题。只要Java面试就会问的JVM性能调优实战合集,涵盖所有性能调优|核心知识点,带你深入理解Java虚拟机,九十分钟让你面试少走99%的...[18]避免 OOM![27]JDK9后,类加载机制,相较于JDK8以前的双亲委派机制的改变-认真的刻刀-博客园。[35]JDK9后,类加载机制,相较于JDK8以前的双亲委派机制的改变-认真的刻刀-博客园。
2026-01-07 15:28:21
764
原创 Java转大模型学习指南
Java开发者转型大模型开发指南摘要:本文为Java开发者提供系统的大模型转型路径,重点突出其工程化思维和系统设计能力的迁移优势。学习路径分为四个阶段:1)基础理论与Python工具链掌握(2-7周);2)Java生态AI框架实战(4-6周),包括LangChain4j和SpringAI的应用;3)大模型工程化开发(6-8周),实现服务化封装与企业集成;4)模型训练优化技术(8-12周)。特别强调Java开发者在企业级应用落地的独特优势,如模块化设计、性能优化和分布式系统经验。提供实战项目建议和学习资源推荐
2026-01-07 15:23:09
1339
原创 分布式锁核心原理与实现详解
在分布式系统架构中,多个服务节点(跨JVM进程)往往需要竞争访问共享资源,例如分布式缓存中的热点数据、数据库全局唯一ID生成、库存扣减等场景。为保证这类跨节点并发访问的安全性,分布式锁应运而生。它是一种跨进程、跨节点的同步机制,与单体应用中的本地锁(如)不同,其竞争粒度从“单进程内线程”升级为“分布式节点上的进程”,核心目标是实现共享资源的有序独占访问。:这是分布式锁的基础特性,同一时刻仅允许一个分布式节点的一个进程成功获取锁,确保共享资源的独占访问,杜绝并发修改冲突;
2026-01-05 09:39:07
565
原创 线程池与多线程核心知识详解
线程池是一种基于“池化技术”的线程管理机制,核心思想是预先创建一组可复用的线程,由统一的调度器管理任务分配与线程生命周期。开发者无需手动创建线程,只需将任务提交给线程池,由池内线程自动执行,任务完成后线程不会销毁,而是返回池中等待下一个任务,从而实现线程复用、降低资源开销。通俗来讲,线程池类似一家“预制员工的咖啡店”:核心线程是长期在岗的正式员工,始终待命;非核心线程是临时员工,空闲超时后辞退;任务队列是顾客排队的队伍,拒绝策略是队伍满时的处理方案,确保服务有序进行而不崩溃。
2026-01-05 09:38:47
708
原创 大模型学习路线
本文精选2025年最新大模型学习资源,提供从入门到进阶的系统学习路径。包含零基础教程(卢菁/清华NLP)、核心原理(哈佛Transformer/斯坦福CS224n)、实战项目(LangChain/微调)和前沿技术(多模态/国产模型)。特别推荐结合HuggingFace和LangChain进行实践,并关注国产模型生态。建议按目标选择学习顺序:入门者从基础课开始,开发者侧重实战,研究者深入原理课程。强调动手实践,配套提供电子书、源码等资源包,帮助学习者全面掌握大模型技术。
2026-01-04 15:57:29
637
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅