某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说
3 3
1 2
1 2
2 1
这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
Sample Output
1
0
2
998
思路:并查集模板题,懂并查集就好写了
#include<iostream>
using namespace std;
int pre[1005];
int find(int x) {
if (pre[x] == x) {
return x;
}
else return find(pre[x]);
}
void join(int x, int y) {
int a = find(x);
int b = find(y);
if (a != b) {
pre[a] = b;
}
}
int main() {
int N, M,i,a,b;
while (scanf("%d",&N)&&N) {
scanf("%d", &M);
for (i = 1; i <= N; i++) {
pre[i] = i;
}
for (i = 1; i <= M; i++) {
scanf("%d %d", &a, &b);
join(a, b);
}
int step = 0;
for (i = 1; i <= N; i++) {
if (pre[i] == i) {
step = step + 1;
}
}
printf("%d\n", step - 1);
}
return 0;
}