一、题目描述
描述
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
输入描述:
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结束。
输出描述:
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
示例1
输入:
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
输出:
1
0
二、思路和代码
思路:在此题中,将所有连通的结点作为同一集合,用并查集来管理更新集合。那么若存在欧拉回路需要满足两个条件:
1、所有点所在集合的代表元素为root或自身
2、所有点的(出入)度和为偶数。
关于并查集可以看这算法笔记-并查集,我觉得他写得很清楚。
#include <iostream>
#include <memory.h>
using namespace std;
/*并查集是优雅的数据结构,元素分组,不相交集合,包括合并和查询
重要思想是用一个元素代表一个集合
每个不相交集合都是树状结构,有个根节点(标志是父节点是自己),通过fa数组,已经可以实现find和merge
优化:1、find过程路径压缩2、按秩合并,用rank数组记录每个结点作为根节点的树高,矮的合并到高的
两个优化一起使用会影响rank的准确性。
*/
//思路:若有欧拉回路,所有的点都是偶度顶点
void init(int fa[], int len){
for(int i=0;i<len;i++){
fa[i]=i;
}
}
// 包括路径压缩
int find(int fa[],int x){
if(x==fa[x])
return x;
return fa[x]=find(fa, fa[x]);
}
//不包括按秩合并
void merge(int fa[],int x, int y){
int fa1 = find(fa, x);
int fa2 = find(fa, y);
if(fa1!=fa2)
fa[fa2]=fa1;
}
//顶点的度数
int main(){
int N, M, x, y, root, tempfa;
bool flag;
int du[1001];
int fa[1001];
//这里的count是因为牛客网不按照题目规范设定答案,所以只要运行一次,提交时把while(true)改成while(count==1)就行。
//int count = 1;
while(true){
//count--;
cin>>N;
if(N==0)
break;
cin>>M;
//数组初始化
memset(du, 0, N+1);
init(fa, N+1);
// 使用并查集,更新度
for(int i=0;i<M;i++){
cin>>x>>y;
du[x]++;
du[y]++;
merge(fa,x, y);
}
root = find(fa, x);
flag = true;
//判断是否欧拉回路
for(int i=1;i<N+1;i++){
//非偶数度
if(du[i]%2!=0){
cout<<0<<endl;
flag = false;
break;
}
tempfa=find(fa, i);
//根结点既不是自己也不是根,这里的判断不够严谨,因为如果有边指向自己,将有多个回路,不能算欧拉回路
if(tempfa!=root&&tempfa!=i){
cout<<0<<endl;
flag = false;
break;
}
}
if(flag)
cout<<1<<endl;
}
}