第一题
签到题
东东在玩游戏“Game23”。
在一开始他有一个数字n,他的目标是把它转换成m,在每一步操作中,他可以将n乘以2或乘以3,他可以进行任意次操作。输出将n转换成m的操作次数,如果转换不了输出-1。
Input
输入的唯一一行包括两个整数n和m(1<=n<=m<=5*10^8).
Output
输出从n转换到m的操作次数,否则输出-1.
Example
- input
120 51840 - output
7 - input
42 42 - output
0 - input
48 72 - output
-1
解题思路
签到题思路比较简单,用m除以n,看是否为整数,如果是整数再继续判断是否可以被3整除或被2整除,记录相除的次数,如果出到最后为1则可以转换,否则不可以。
代码实现
#include<iostream>
using namespace std;
int main()
{
int m, n, ans = 0;
cin >> n >> m;
if(n==m) cout << 0;
else if(m%n!=0) cout << -1;
else
{
int mod = m / n;
while(mod!=1)
{
if (mod%3==0) {
mod /= 3;
ans++;
}
else if(mod%2==0){
mod /= 2;
ans++;
}
else
{
cout << -1;
return 0;
}
}
cout << ans;
}
return 0;
}
第二题
LIS&LCS问题
东东有两个序列A和B。
他想要知道序列A的LIS和序列AB的LCS的长度。
注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。
Input
第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B
Output
输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度
Example
- input
5 5
1 3 2 5 4
2 4 3 1 5 - output
3 2
解题思路
LIS问题的状态转移方程为:

LIS的长度为max{f[i], i=1…n },其中fi 表示以 Ai 为结尾的最长上升序列的方程。
LCS问题的状态转移方程为:
if i0||j0,f[i][j]=0
else if Ai == Bj ,f[i][j] = f[i-1][j-1] + 1
else f[i][j] = max(f[i-1][j], f[i][j-1])
然后f[m][n]的值即为LCS 的长度
代码实现
#include<iostream>
using namespace std;
int dp[5010][5010];//.......
int main()
{
int n, m;
cin >> n >> m;
long long a[5010], b[5010];
int ans=1;
int length[5010];
for (int i = 1;i<=n;i++) cin >> a[i];
for (int i = 1;i<=m;i++) cin >> b[i];
for(int i = 1;i<=n;i++) length[i] = 1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j < i; j++)
if (a[j] < a[i] && length[j] + 1 > length[i])
length[i] = length[j] + 1;
ans = max(ans, length[i]);
}
cout << ans << " ";
for (int i = 0; i <= n; i++) {
for (int j = 0; j <= m; j++) {
if (i == 0 || j == 0) dp[i][j] = 0;
else if (a[i] == b[j])
dp[i][j] = dp[i - 1][j - 1] + 1;
else
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
}
}
cout << dp[n][m] << endl;
return 0;
}
第三题
拿数问题
YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。
给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。
Input
第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数
第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)
Output
输出一个整数:n你能得到最大分值。
Example
- input
2
1 2 - output
2 - input
3
1 2 3 - output
4 - input
9
1 2 1 3 2 2 2 2 3 - output
10
解题思路
状态转移方程为:
dp[i] = max(dp[i - 1], dp[i - 2] + i * sum[i])
dp数组记录每一个数出现的次数,dp[i]记录取小于等于i的数时的最大分数。
代码实现
#include <iostream>
using namespace std;
long long dp[100010],a[100010];
int main()
{
long long n, t, sum, mx=0;
cin>>n;
for(long long i=0;i<n;i++)
{
cin >> t;
a[t]++;
mx = max(mx, t);
}
dp[0] = 0, dp[1] = a[1];
for(long long i=2;i<=mx;i++)
{
t =a[i]*i;
dp[i] = max(dp[i-1], dp[i-2]+t);
}
cout << dp[mx];
return 0;
}
本文解析了三道游戏算法题目,包括转换数字、寻找最长递增子序列与最长公共子序列、以及拿数问题II,提供了详细的解题思路和C++代码实现。
1864

被折叠的 条评论
为什么被折叠?



