山东大学程序设计第十周作业

本文解析了三道游戏算法题目,包括转换数字、寻找最长递增子序列与最长公共子序列、以及拿数问题II,提供了详细的解题思路和C++代码实现。

第一题

签到题

东东在玩游戏“Game23”。

在一开始他有一个数字n,他的目标是把它转换成m,在每一步操作中,他可以将n乘以2或乘以3,他可以进行任意次操作。输出将n转换成m的操作次数,如果转换不了输出-1。

Input

输入的唯一一行包括两个整数n和m(1<=n<=m<=5*10^8).

Output

输出从n转换到m的操作次数,否则输出-1.

Example
  • input
    120 51840
  • output
    7
  • input
    42 42
  • output
    0
  • input
    48 72
  • output
    -1

解题思路

签到题思路比较简单,用m除以n,看是否为整数,如果是整数再继续判断是否可以被3整除或被2整除,记录相除的次数,如果出到最后为1则可以转换,否则不可以。

代码实现

#include<iostream>
using namespace std;
int main()
{
    int m, n, ans = 0;
    cin >> n >> m;
    if(n==m) cout << 0;
    else if(m%n!=0) cout << -1;
    else
    {
        int mod = m / n;
        while(mod!=1)
        {
			if (mod%3==0) {
				mod /= 3;
				ans++;
			}
			else if(mod%2==0){
				mod /= 2;
				ans++;
			}
            else
            {
                cout << -1;
                return 0;
            }

        }
        cout << ans;
    }
    return 0;
}


第二题

LIS&LCS问题

东东有两个序列A和B。

他想要知道序列A的LIS和序列AB的LCS的长度。

注意,LIS为严格递增的,即a1<a2<…<ak(ai<=1,000,000,000)。

Input

第一行两个数n,m(1<=n<=5,000,1<=m<=5,000)
第二行n个数,表示序列A
第三行m个数,表示序列B

Output

输出一行数据ans1和ans2,分别代表序列A的LIS和序列AB的LCS的长度

Example
  • input
    5 5
    1 3 2 5 4
    2 4 3 1 5
  • output
    3 2

解题思路

LIS问题的状态转移方程为:
在这里插入图片描述
LIS的长度为max{f[i], i=1…n },其中fi 表示以 Ai 为结尾的最长上升序列的方程。

LCS问题的状态转移方程为:
if i0||j0,f[i][j]=0
else if Ai == Bj ,f[i][j] = f[i-1][j-1] + 1
else f[i][j] = max(f[i-1][j], f[i][j-1])
然后f[m][n]的值即为LCS 的长度

代码实现

#include<iostream>
using namespace std;
int dp[5010][5010];//.......
int main()
{
    int n, m;
    cin >> n >> m;
    long long a[5010], b[5010];
    int ans=1;
    int length[5010];
    for (int i = 1;i<=n;i++) cin >> a[i];
    for (int i = 1;i<=m;i++) cin >> b[i];
    for(int i = 1;i<=n;i++) length[i] = 1;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j < i; j++)
            if (a[j] < a[i] && length[j] + 1 > length[i])
                length[i] = length[j] + 1;
        ans = max(ans, length[i]);
    }
	cout << ans << " ";
    for (int i = 0; i <= n; i++) {
		for (int j = 0; j <= m; j++) {
			if (i == 0 || j == 0) dp[i][j] = 0;
			else if (a[i] == b[j])
				dp[i][j] = dp[i - 1][j - 1] + 1;
			else
				dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);
		}
	}
	cout << dp[n][m] << endl;
	return 0;
}


第三题

拿数问题

YJQ 上完第10周的程序设计思维与实践后,想到一个绝妙的主意,他对拿数问题做了一点小修改,使得这道题变成了 拿数问题 II。

给一个序列,里边有 n 个数,每一步能拿走一个数,比如拿第 i 个数, Ai = x,得到相应的分数 x,但拿掉这个 Ai 后,x+1 和 x-1 (如果有 Aj = x+1 或 Aj = x-1 存在) 就会变得不可拿(但是有 Aj = x 的话可以继续拿这个 x)。求最大分数。

Input

第一行包含一个整数 n (1 ≤ n ≤ 105),表示数字里的元素的个数

第二行包含n个整数a1, a2, …, an (1 ≤ ai ≤ 105)

Output

输出一个整数:n你能得到最大分值。

Example
  • input
    2
    1 2
  • output
    2
  • input
    3
    1 2 3
  • output
    4
  • input
    9
    1 2 1 3 2 2 2 2 3
  • output
    10

解题思路

状态转移方程为:
dp[i] = max(dp[i - 1], dp[i - 2] + i * sum[i])
dp数组记录每一个数出现的次数,dp[i]记录取小于等于i的数时的最大分数。

代码实现

#include <iostream>
using namespace std;

long long dp[100010],a[100010];
int main()
{
	long long n, t, sum, mx=0;
	cin>>n;
	for(long long i=0;i<n;i++)
	{
        cin >> t;
        a[t]++;
		mx = max(mx, t);
	}
	dp[0] = 0, dp[1] = a[1];
	for(long long i=2;i<=mx;i++)
	{
		t =a[i]*i;
		dp[i] = max(dp[i-1], dp[i-2]+t);
	}
    cout << dp[mx];
	return 0;
}

### 山东大学程序设计思维课程资源概述 对于山东大学开设的《程序设计思维》这门课程,学生可以通过多种渠道获取高质量的学习材料和作业示例。该课程旨在培养学生利用编程解决问题的能力,强调逻辑思考与算法实现。 #### 1. 官方教材与讲义 学校通常会指定官方教科书作为主要学习工具,并提供配套的教学幻灯片(PPT),这些资料往往包含了大量实例分析以及课后练习题目[^3]。教师也会通过校园网发布详细的电子版笔记供同学们下载复习。 #### 2. 编程实践平台 为了帮助学员更好地掌握所学知识点,《程序设计思维》鼓励使用在线编程环境来完成实际操作训练。例如OJ (Online Judge) 系统可以自动评判提交代码的质量并给出反馈意见;而像LeetCode这样的网站则提供了丰富的竞赛级挑战项目,有助于提高个人技能水平[^4]。 #### 3. 开源社区贡献 参与开源项目的开发不仅能够加深对特定技术栈的理解程度,同时也是积累实战经验的好方法之一。GitHub上存在许多由国内外知名高校师生共同维护的技术仓库,在这里可以看到其他同学是如何运用课堂上学到的知识解决真实世界中的难题[^5]。 ```python def example_function(x, y): """ 这是一个简单的函数定义示范, 可用于展示如何编写清晰易懂的Python代码。 参数: x : int - 输入参数二 返回值: tuple - 结果元组包含两个元素 """ result_sum = x + y product_result = x * y return (result_sum, product_result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值