Python3 numpy,pandas,DataFrame基本操作

本文通过学生成绩表实例,讲解Pandas DataFrame的基本操作,包括求每名同学的总成绩、按成绩排序、重置索引、按性别分组分析以及按分数段分组统计。此外,还探讨了面试中关于Pandas groupby的问题,如何找到学生最高和最低成绩的科目,以及rank()函数的应用和不同排序方法。
摘要由CSDN通过智能技术生成

本文以学生成绩表为例,做几道简单的题。

题目(1)

  1. 求出每名同学的总成绩
  2. 按总成绩排序
  3. 重置排序后的索引
  4. 按性别进行分组分析
  5. 按总分进行分组统计,300分以下,300-400,400分以上

代码

1.求出每名同学的总成绩

import pandas as pd
import numpy as np

stu_score=pd.read_excel ('./data/stu_scores.xlsx')
#print(stu_score)

#1.求总成绩
stu_score['Sum']=stu_score.iloc[:,2:].sum(axis=1)
print(stu_score)

结果:

         Number Gender  Chinese  Math  Engish  Physics  Chemistry  Sum
0   14310320101      男       73    69      71       72         60  345
1   14310320102      女       72    67      70       71         62  342
2   14310320103      女       68    70      69       75         61  343
3   14310320104      男       62    71      67       76         64  340
4   14310320105      女       76    68      72       71         65  352
5   14310320106      男       68    67      68       70         60  333
6   14310320107      男       77    69      73       74         64  357
7   14310320108      男       67    56      62       60         47  292
8   14310320109      男       88    93      91       98         88  458
9   14310320110      女       77    69      73       77         65  361
10  14310320111      男       67    56      62       60         51  296
11  14310320112      男       76    74      75       77         68  370
12  14310320113      男       80    91      86      100         84  441
13  14310320114      男       62    57      60       61         50  290
14  14310320115      女       74    73      74       82         67  370
15  14310320116      女       80    79      80       87         70  396
16  14310320117      男       77    69      73       75         65  359
17  14310320118      男       67    56      62       61         48  294
18  14310320119      女       52    48      50       57         43  250
19  14310320120      女       68    70      69       77         62  346
20  14310320121      女       62    71      67       75         62  337
21  14310320122      男       76    68      72       72         63  351
22  14310320123      女       66    66      66       75         62  335
23  14310320124      女       68    70      69       75         64  346
24  14310320125      女       62    71      67       76         66  342
25  14310320126      男       76    68      72       76         61  353
26  14310320127      女       70    50      60       59         42  281
27  14310320128      男       73    82      78       91         75  399
28  14310320129      男       90    97      94      101         91  473
29  14310320130      男       64    64      64       71         59  322

2.按总成绩排序

#2.按总分进行排序
sum_sort=stu_score.sort_values(by=['Sum'],ascending=False)
p
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值