一、用户标签
1、维度
- 用户标签,如年龄、工作、性别等
- 行为标签,如消费金额、消费频次等
- 消费标签,如点击、收藏、购买等
- 内容分析,浏览内容,如科技、娱乐、新闻类等
2、阶段
用户生命周期的三个阶段
- 获客:如何进行拉新,通过更精准的营销获取客户;
- 粘客:个性化推荐,搜索排序,场景运营等;
- 留客:流失率预测,分析关键节点降低流失率
3、打标签的方式
典型的方式有:
- PGC:专家生产
- UGC:普通生产
4、如何给用户推荐标签
当用户u给物品i打标签时,可以给用户推荐和物品i相关的标签,方法如下:
- 方法1:给用户u推荐整个系统最热门的标签
- 方法2:给用户u推荐物品i上最热门的标签
- 方法3:给用户u推荐他自己经常使用的标签
- 将方法2和3进行加权融合,生成最终的标签推荐结果
二、基于标签的算法
1、SimpleTagBased
用户u对商品i的感兴趣程度为:
其中,user_tags[u,t]表示用户u打过标签t的次数,tag_items[t,i]表示商品i被打过t标签的次数。
对于一个用户来说,找到他标记次数多的标签,并找到呗该标签标记次数多的商品,推荐给该用户。
2、NormTagBased
NormTagBased算法是对SimpleTagBased算法的改进,公式为:
用户打过的所有标签次数,以及标签t被标记过的总次数,相当于做了归一化处理。
3、TagBased-TFIDF
TagBased-TFIDF借鉴了NLP中的TF-IDF算法,对热门标签进行惩罚。
tag_users[t]表示标签t被多少个不同的用户使用。