推荐系统之用户标签,以及基于标签的算法

一、用户标签

1、维度

  • 用户标签,如年龄、工作、性别等
  • 行为标签,如消费金额、消费频次等
  • 消费标签,如点击、收藏、购买等
  • 内容分析,浏览内容,如科技、娱乐、新闻类等

2、阶段

用户生命周期的三个阶段

  • 获客:如何进行拉新,通过更精准的营销获取客户;
  • 粘客:个性化推荐,搜索排序,场景运营等;
  • 留客:流失率预测,分析关键节点降低流失率

3、打标签的方式

典型的方式有:

  • PGC:专家生产
  • UGC:普通生产

4、如何给用户推荐标签

当用户u给物品i打标签时,可以给用户推荐和物品i相关的标签,方法如下:

  • 方法1:给用户u推荐整个系统最热门的标签
  • 方法2:给用户u推荐物品i上最热门的标签
  • 方法3:给用户u推荐他自己经常使用的标签
  • 将方法2和3进行加权融合,生成最终的标签推荐结果

二、基于标签的算法

1、SimpleTagBased

用户u对商品i的感兴趣程度为:
在这里插入图片描述
其中,user_tags[u,t]表示用户u打过标签t的次数,tag_items[t,i]表示商品i被打过t标签的次数。
对于一个用户来说,找到他标记次数多的标签,并找到呗该标签标记次数多的商品,推荐给该用户。

2、NormTagBased

NormTagBased算法是对SimpleTagBased算法的改进,公式为:
在这里插入图片描述

用户打过的所有标签次数,以及标签t被标记过的总次数,相当于做了归一化处理。

3、TagBased-TFIDF

TagBased-TFIDF借鉴了NLP中的TF-IDF算法,对热门标签进行惩罚。
在这里插入图片描述
tag_users[t]表示标签t被多少个不同的用户使用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值