泛函分析
文章平均质量分 92
Tengfei Wang
乘自在游,唯独喜欢抽象,现要有所作为。
我的博客:https://www.cnblogs.com/cqwtf/p/4207458.html
展开
-
局部凸空间及其在算子空间中的应用之四——归纳极限空间2
归纳极限拓扑的“极限”具体该如何理解呢?本文将继续进行详细深入的探讨。原创 2024-09-22 22:36:26 · 944 阅读 · 0 评论 -
局部凸空间及其在算子空间中的应用之四——归纳极限空间1
归纳极限拓扑允许我们考虑一系列局部凸空间,并且在这种系列中的映射是连续嵌入的情况下,定义一个“最细”的拓扑,使得所有这些嵌入都是连续的。这种方法为理解和构造复杂的数学对象提供了一种系统的方式,并且在现代数学中具有广泛的应用。原创 2024-09-18 13:11:30 · 360 阅读 · 0 评论 -
一个豪斯多夫局部凸空间不可度量化的例子
我们在本篇短文中,给出一个是豪斯多夫局部凸空间但不是可度量化的空间的例子,并证明该结论。原创 2024-08-25 23:43:14 · 713 阅读 · 0 评论 -
局部凸空间及其在算子空间中的应用之三
本文继续该系列的上一篇文章,介绍一个特殊而重要的豪斯多夫局部凸空间,并证明其上的结论。然后我们给出了线性算子的连续性刻画的几个重要结论,方便后续文章的引用。原创 2024-08-24 11:47:35 · 889 阅读 · 0 评论 -
局部凸空间及其在算子空间中的应用之二
本文继续该系列上一篇文章,讲述泛函分析中最重要的一类空间——局部凸空间及其性质。我们先引入局部凸空间,然后通过半范系构造局部凸空间,并表明半范系是构造局部凸空间的充要条件,即局部凸空间重要的构造定理2.4。然后顺便介绍了拓扑向量空间中线性算子的有界性和连续性,最后给出了豪斯多夫局部凸空间的相关结论。由于字数受限,我们将一个重要的豪斯多夫局部凸空间的例子留在下一篇文章中进行介绍。原创 2024-08-24 02:04:29 · 556 阅读 · 0 评论 -
局部凸空间及其在算子空间中的应用之一
本文为系列文章之一,作为入门,将重点阐述涉及到的拓扑向量空间的相关的概念和性质。原创 2024-08-21 10:35:50 · 987 阅读 · 0 评论