内部排序之希尔排序法
希尔排序(Shell Sort)是插入排序的一种,它是针对直接插入排序算法的改进。
主要思想
通过根据一定距离将元素分组,同组类的元素来进行,各趟比较所用的距离随着算法的进行而减小,直到只比较相邻元素的最后一趟(距离1)排序为止(最后走一遍直接插入排序,此时已经降低直接插入排序的比较和交换)。希尔的想法是,间距的初始值h=length/2,最后的一个间距值就是1。取值范围就是 { l e n g t h / 2 , l e n g t h / 2 / 2 , . . . , 1 } \{length/2,length/2/2,...,1\} {length/2,length/2/2,...,1}
过程演示
JAVA代码
希尔的增量序列,长度减半的方式, k , k 2 , k 4 . . . 1 , 且 k = ⌊ l e n g t h 2 ⌋ { k,\frac{k}{2},\frac{k}{4}...1 ,且k= \lfloor \frac{length}{2} \rfloor } k,2k,4k...1,且k=⌊2length⌋。
package sort;
public class ShellSort {
public static void main(String[] args) {
int[] o = {7, 6, 9, 3, 1, 5, 2, 4, 8};
System.out.print("排序前: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
// 算法部分
int i, j, step;
int temp;
for (step = o.length / 2; step > 0; step /= 2) {
for (i = step; i < o.length; i++) {
temp = o[i];
for (j = i; j >= step; j -= step) {
if (temp < o[j - step]) {
o[j] = o[j - step];
} else {
break;
}
}
o[j] = temp;
}
System.out.print("step为[" + step + "]排序后: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
}
System.out.print("最终排序后: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
}
}
Hibbard增量方式, 2 k − 1 , 2 k − 1 − 1 , 2 k − 2 − 1...1 , 且 k ≤ ⌊ l o g 2 n ⌋ { 2^k-1,2^{k-1}-1,2^{k-2}-1...1 ,且 k \leq \lfloor log_2 n \rfloor } 2k−1,2k−1−1,2k−2−1...1,且k≤⌊log2n⌋。
package sort;
public class ShellSort {
public static void main(String[] args) {
int[] o = {4, 8, 9, 7, 6, 2, 6, 1};
System.out.print("排序前: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
// 算法部分
int i, j, step;
int temp;
int k = (int) Math.floor(Math.log10(o.length) / Math.log10(2));
for (step = (int) Math.pow(2, k) - 1; step > 0; k -= 1, step = (int) Math.pow(2, k) - 1) {
for (i = step; i < o.length; i++) {
temp = o[i];
for (j = i; j >= step; j -= step) {
if (temp < o[j - step]) {
o[j] = o[j - step];
} else {
break;
}
}
o[j] = temp;
}
System.out.print("step为[" + step + "]排序后: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
}
System.out.print("最终排序后: ");
for (int t : o) {
System.out.print(t);
System.out.print(" ");
}
System.out.println();
}
}
算法分析
空间复杂度 O ( 1 ) O(1) O(1)
根据不同的增量序列可以得到不同的时间复杂度。
时间复杂度 使用希尔的增量序列 k , k 2 , k 4 . . . 1 , 且 k = ⌊ l e n g t h 2 ⌋ {k,\frac{k}{2},\frac{k}{4}...1 ,且k= \lfloor \frac{length}{2} \rfloor } k,2k,4k...1,且k=⌊2length⌋,时间复杂度为 O ( n 2 ) {O(n^2)} O(n2)。
Hibbard增量序列 2 k − 1 , 2 k − 1 − 1 , 2 k − 2 − 1...1 , 且 k ≤ ⌊ l o g 2 n ⌋ { 2^k-1,2^{k-1}-1,2^{k-2}-1...1 ,且 k \leq \lfloor log_2 n \rfloor } 2k−1,2k−1−1,2k−2−1...1,且k≤⌊log2n⌋,时间复杂度为 O ( n 3 / 2 ) O(n^{3/2}) O(n3/2)。