代码随想录day43

1049. 最后一块石头的重量 II

class Solution {
    public int lastStoneWeightII(int[] stones) {
        int sum = 0;
        for(int num : stones){
            sum += num;
        } 
        int target = sum / 2;
        int [][] dp = new int[stones.length][target+1];
        // dp[i][j]  遍历到第i块,容量为j时的最大容量为dp[i][j]
        for(int i =0 ;i <= target;i++){
            if(i < stones[0]){
                dp[0][i] = 0;
            }else{
                dp[0][i] = stones[0];
            }
        }

        for(int i = 1;i < stones.length;i++){
            for(int j = 0;j <= target;j++){
                if(j < stones[i]){
                    dp[i][j] = dp[i - 1][j];
                }else{
                    dp[i][j] = Math.max(dp[i-1][j],dp[i -1][j - stones[i]]+stones[i]);
                }
            }
        }
        return sum - 2 * dp[stones.length -1][target];

    }
}

494. 目标和

题目:

给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。

返回可以使最终数组和为目标数 S 的所有添加符号的方法数。

示例:

输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5

解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3

一共有5种方法让最终目标和为3。

提示:

数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下

思路

要想成为目标和,那么一定会有加法一堆,减法一堆
我们设置加法为left,减法为right
left + right = sum
left - right = target
如果加法里面的数字是不能整除的,那么则不存在这个表达式
那么我们装满这个容器有多少种方法呐
我们可以采用动态规划和递归去做

朴素dfs方式
class Solution {
    int res;
    public int findTargetSumWays(int[] nums, int target) {
        /**
            left + right = sum
            left - right = target

            left = (sum + target) / 2;

            // 所有的这个容器left 装满 有多少种方法
        
         */ 
         res = 0;
         int sum = 0;
         for(int num : nums){
             sum += num;
         }
         if((sum + target)%2 == 1) return 0;
         int left = (sum + target) / 2;
         dfs(nums,left,0);
         return res;


        

    }
    public void dfs(int[] nums,int target,int index){
        if(index > nums.length || target < 0) return;
        if(index == nums.length ){
            if(target == 0){
                res ++;
            }
            return;
        } 
        dfs(nums,target,index + 1);
        dfs(nums,target - nums[index],index + 1);
        
    }
}
动态规划
class Solution {
    public int findTargetSumWays(int[] nums, int target) {
        /**
            left + right = sum;
            left - right = target;
            left = (sum + target) / 2;

            我们将问题转换成我们装满left有多少种方式
         */ 
         int sum = 0;
         for(int num:nums){
             sum += num;
         }
         if(((sum + target) % 2 == 1)) return 0;
         int left = (sum + target) / 2;
         int[] dp = new int[left + 1];
         
        //  记得初始化,为什么dp[0] =1,因为空集也是一种方法
         dp[0] = 1;

         for(int i = 0;i < nums.length;i++){
             for(int j = left;j >= nums[i];j--){
                 dp[j] += dp[j - nums[i]];
             }
         }
         return dp[left];

    }
}

474. 一和零

class Solution {
    public int findMaxForm(String[] strs, int m, int n) {
        /**
            dp[i][j] 表示i个0,j个1的最大自己子集数量

            dp[i][j] = Math.max(dp[i - x][j - y] + 1,dp[i][j]);
        
         */
        int[][] dp = new int[m + 1][n + 1];

        for(String str : strs){
            char[] str_arr = str.toCharArray();
            int x = 0,y = 0;
            for(char c : str_arr){
                if(c == '0'){
                    x ++;
                }else{
                    y ++;
                }
            }
            for(int i = m;i >= x;i--){
                for(int j = n;j >= y;j--){
                    dp[i][j] = Math.max(dp[i][j],dp[i-x][j - y] + 1);
                }
            }
        }
        return dp[m][n];

    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值