1049. 最后一块石头的重量 II
class Solution {
public int lastStoneWeightII(int[] stones) {
int sum = 0;
for(int num : stones){
sum += num;
}
int target = sum / 2;
int [][] dp = new int[stones.length][target+1];
// dp[i][j] 遍历到第i块,容量为j时的最大容量为dp[i][j]
for(int i =0 ;i <= target;i++){
if(i < stones[0]){
dp[0][i] = 0;
}else{
dp[0][i] = stones[0];
}
}
for(int i = 1;i < stones.length;i++){
for(int j = 0;j <= target;j++){
if(j < stones[i]){
dp[i][j] = dp[i - 1][j];
}else{
dp[i][j] = Math.max(dp[i-1][j],dp[i -1][j - stones[i]]+stones[i]);
}
}
}
return sum - 2 * dp[stones.length -1][target];
}
}
494. 目标和
题目:
给定一个非负整数数组,a1, a2, …, an, 和一个目标数,S。现在你有两个符号 + 和 -。对于数组中的任意一个整数,你都可以从 + 或 -中选择一个符号添加在前面。
返回可以使最终数组和为目标数 S 的所有添加符号的方法数。
示例:
输入:nums: [1, 1, 1, 1, 1], S: 3
输出:5
解释:
-1+1+1+1+1 = 3
+1-1+1+1+1 = 3
+1+1-1+1+1 = 3
+1+1+1-1+1 = 3
+1+1+1+1-1 = 3
一共有5种方法让最终目标和为3。
提示:
数组非空,且长度不会超过 20 。
初始的数组的和不会超过 1000 。
保证返回的最终结果能被 32 位整数存下
思路
要想成为目标和,那么一定会有加法一堆,减法一堆
我们设置加法为left,减法为right
left + right = sum
left - right = target
如果加法里面的数字是不能整除的,那么则不存在这个表达式
那么我们装满这个容器有多少种方法呐
我们可以采用动态规划和递归去做
朴素dfs方式
class Solution {
int res;
public int findTargetSumWays(int[] nums, int target) {
/**
left + right = sum
left - right = target
left = (sum + target) / 2;
// 所有的这个容器left 装满 有多少种方法
*/
res = 0;
int sum = 0;
for(int num : nums){
sum += num;
}
if((sum + target)%2 == 1) return 0;
int left = (sum + target) / 2;
dfs(nums,left,0);
return res;
}
public void dfs(int[] nums,int target,int index){
if(index > nums.length || target < 0) return;
if(index == nums.length ){
if(target == 0){
res ++;
}
return;
}
dfs(nums,target,index + 1);
dfs(nums,target - nums[index],index + 1);
}
}
动态规划
class Solution {
public int findTargetSumWays(int[] nums, int target) {
/**
left + right = sum;
left - right = target;
left = (sum + target) / 2;
我们将问题转换成我们装满left有多少种方式
*/
int sum = 0;
for(int num:nums){
sum += num;
}
if(((sum + target) % 2 == 1)) return 0;
int left = (sum + target) / 2;
int[] dp = new int[left + 1];
// 记得初始化,为什么dp[0] =1,因为空集也是一种方法
dp[0] = 1;
for(int i = 0;i < nums.length;i++){
for(int j = left;j >= nums[i];j--){
dp[j] += dp[j - nums[i]];
}
}
return dp[left];
}
}
class Solution {
public int findMaxForm(String[] strs, int m, int n) {
/**
dp[i][j] 表示i个0,j个1的最大自己子集数量
dp[i][j] = Math.max(dp[i - x][j - y] + 1,dp[i][j]);
*/
int[][] dp = new int[m + 1][n + 1];
for(String str : strs){
char[] str_arr = str.toCharArray();
int x = 0,y = 0;
for(char c : str_arr){
if(c == '0'){
x ++;
}else{
y ++;
}
}
for(int i = m;i >= x;i--){
for(int j = n;j >= y;j--){
dp[i][j] = Math.max(dp[i][j],dp[i-x][j - y] + 1);
}
}
}
return dp[m][n];
}
}