1:克鲁斯卡尔算法的时间复杂度为O(e*loge) e为边数。克鲁斯卡尔算法主要针对边展开,边数少时效率会很高,所以对于稀疏图有优势。这个复杂度就是快排需要的时间。
2:普里姆算法的时间复杂度为O(n*n),适用于稠密图。(n为顶点数);
结论:稀疏就用第一个,稠密就第二个。
例题:
数据结构实验之图论九:最小生成树
Time Limit: 1000 ms Memory Limit: 65536 KiB
Submit Statistic
Problem Description
有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。
Input
输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=10000)
剩下m行每行3个正整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c。
Output
每组输出占一行,仅输出最小花费。
Sample Input
3 2
1 2 1
1 3 1
1 0
Sample Output
2
0
1
克鲁斯卡尔算法:
#include <bits/stdc++