最小生成树 普里姆算法的时间复杂度为O(n*n),适用于稠密图。(n为顶点数); 克鲁斯卡尔算法主要针对边展开,边数少时效率会很高,所以对于稀疏图有优势。

本文探讨了最小生成树问题,指出克鲁斯卡尔算法在边数较少的稀疏图中效率较高,时间复杂度为O(e*loge),而普里姆算法适用于稠密图,时间复杂度为O(n*n)。结论是根据图的密度选择合适的算法,稀疏图使用克鲁斯卡尔,稠密图采用普里姆。给出的数据结构实验示例展示了如何寻找连接所有城市的最小成本公路网络。
摘要由CSDN通过智能技术生成

1:克鲁斯卡尔算法的时间复杂度为O(e*loge) e为边数。克鲁斯卡尔算法主要针对边展开,边数少时效率会很高,所以对于稀疏图有优势。这个复杂度就是快排需要的时间。

2:普里姆算法的时间复杂度为O(n*n),适用于稠密图。(n为顶点数);

结论:稀疏就用第一个,稠密就第二个。

例题:
数据结构实验之图论九:最小生成树
Time Limit: 1000 ms Memory Limit: 65536 KiB
Submit Statistic
Problem Description

有n个城市,其中有些城市之间可以修建公路,修建不同的公路费用是不同的。现在我们想知道,最少花多少钱修公路可以将所有的城市连在一起,使在任意一城市出发,可以到达其他任意的城市。

Input

输入包含多组数据,格式如下。
第一行包括两个整数n m,代表城市个数和可以修建的公路个数。(n <= 100, m <=10000)
剩下m行每行3个正整数a b c,代表城市a 和城市b之间可以修建一条公路,代价为c。

Output

每组输出占一行,仅输出最小花费。
Sample Input

3 2
1 2 1
1 3 1
1 0
Sample Output

2
0

1
克鲁斯卡尔算法:

#include <bits/stdc++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值