二叉树节点访问时,都是将即将被访问的节点视为根节点的
假设二叉树的节点定义如下:
class TreeNode {
int val = 0;
TreeNode left = null;
TreeNode right = null;
public TreeNode(int val) {
this.val = val;
}
}
递归方式遍历二叉树
先序遍历
/**********************
* 二叉树的先序遍历算法 -----递归形式
* @param root 二叉树的根节点
*/
public static void preorderTraversalByRecu(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
//读取根节点
System.out.print(root.val);
//读取左右孩子节点
preorderTraversalByRecu(root.left);
preorderTraversalByRecu(root.right);
}
中序遍历
/**************************
* 二叉树的中序遍历算法------递归形式
* @param root 二叉树的根节点
*/
public static void inorderTraversalByRecu(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
//读取左孩子节点
inorderTraversalByRecu(root.left);
//读取根节点
System.out.print(root.val);
//读取左右孩子节点
inorderTraversalByRecu(root.right);
}
后序遍历
/**************************
* 二叉树的后序遍历算法------递归形式
* @param root 二叉树的根节点
*/
public static void postorderTraversalByRecu(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
//读取左孩子节点
postorderTraversalByRecu(root.left);
//读取左右孩子节点
postorderTraversalByRecu(root.right);
//读取根节点
System.out.print(root.val);
}
非递归方式遍历二叉树
先序遍历
/**********************
* 二叉树的先序遍历算法------非递归形式
* @param root 二叉树的根节点
*/
public static void preorderTraversal(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
Stack<TreeNode> stack=new Stack<>();//建立辅助栈
stack.push(root);//将根节点入栈
//当栈不为空时
while(!stack.isEmpty())
{
//弹出一个栈中节点 即先读取根节点
TreeNode node=stack.pop();
System.out.print(node.val);//取根节点值
//判断根节点左右孩子节点是否存在 将左右孩子压栈
//首先判断右孩子 因为先压栈的后出栈
if(node.right!=null) stack.push(node.right);
if(node.left!=null) stack.push(node.left);
}
}
中序遍历
/********************
* 二叉树的中序遍历算法------非递归形式
* @param root 二叉树的根节点
*/
public static void inorderTraversal(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
Stack<TreeNode> stack=new Stack<>();//建立辅助栈
stack.push(root);//将根节点入栈
TreeNode leftNode=root.left;//根节点的左孩子节点
//左孩子节点或者栈不为空时 循环
while(leftNode!=null||!stack.isEmpty())
{
//如果左孩子节点不为空 说明还没遍历到当前情况最左边的孩子 继续探索左孩子节点
if(leftNode!=null)
{
//将当前节点压栈 左孩子节点指向当前节点的左孩子节点
stack.push(leftNode);
leftNode=leftNode.left;
}
//如果左孩子节点已经为空 则上一个元素已经是当前最左边的孩子了
else {
//从栈中弹出一个节点并访问
TreeNode node=stack.pop();
System.out.print(node.val);
//访问当前节点的右孩子节点
leftNode=node.right;
}
}
}
后序遍历
/**********************
* 二叉树的后序遍历算法------非递归形式
* @param root 二叉树的根节点
*/
public static void postorderTraversal(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
Stack<TreeNode> stack=new Stack<>();//建立辅助栈
boolean flag=true;//辅助变量表示当前结点的左孩子节点是否被访问(为空等同于已访问)
TreeNode curNode=root;//当前访问的变量
do//栈非空时 循环
{
//将所有的最左节点入栈
while(curNode!=null)
{
stack.push(curNode);
curNode=curNode.left;
}
//此时 辅助变量应该设置为true
flag=true;
TreeNode preNode=null;//指向刚刚访问过的节点
while((!stack.isEmpty())&&flag)
{
curNode=stack.peek();//当前栈顶元素
if(curNode.right==preNode)//当前节点的右孩子为空 或者已经被访问过
{
//栈顶节点出栈 访问
System.out.print(stack.pop().val);//即curNode
preNode=curNode;
}
else//否则 处理右孩子节点
{
curNode=curNode.right;
flag=false;
}
}
}while(!stack.isEmpty());
}
后序遍历II
/********************
* 首先思考一个问题 先序遍历和后序遍历的顺序是什么?
* 先序遍历:根左右 后序遍历:左右根 两者之间有联系吗
* 看完了先序遍历的算法(非递归) 是不是比较简单?
* 那么能否修改一下先序遍历的算法 使之也能产生后序遍历的序列呢?
* 先序遍历肯定是不会改变根节点遍历顺序的 但如果改变一下左右子树的遍历顺序 会怎么样呢?
* 节点遍历顺序变成了 根右左 ,正好是后序遍历的逆序
* 而这样的修改不难实现 只需要修改一下先序遍历中左右孩子节点入栈的顺序就可以了
* 之后将先序结果逆序 便是后序遍历的结果
* 二叉树的后序遍历算法------非递归形式II
* @param root 二叉树的根节点
*/
public static void postorderTraversalII(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
Stack<TreeNode> stack=new Stack<>();//建立辅助栈
stack.push(root);//将根节点入栈
//逆序的结果集 弹出时序列正好反过来
Stack<TreeNode> reverseResult=new Stack<>();//只用于存储
//栈非空时 遍历
while(!stack.isEmpty())
{
//栈中弹出一个节点
TreeNode node=stack.pop();
//暂时不访问根节点 将其放入结果栈中
reverseResult.push(node);
//判断根节点左右孩子节点是否存在 将左右孩子压栈
//改变判断顺序后 先判断左孩子
if(node.left!=null) stack.push(node.left);
if(node.right!=null) stack.push(node.right);
}
//现在 将逆序结果集中的结果输出
//栈的输出就是逆序形式
while(!reverseResult.isEmpty())
{
//栈中弹出结果输出
System.out.print(reverseResult.pop().val);
}
}
层次遍历
/*********************
* 二叉树的层次遍历 (广度遍历)
* @param root 二叉树的根节点
*/
public static void levelTraversal(TreeNode root)
{
//当前根节点为空 直接返回
if(root==null)
{
return;
}
//使用辅助队列记录未访问过的节点
Queue<TreeNode> queue=new LinkedList<TreeNode>();
queue.offer(root);//头结点入栈
//队列非空时,循环
while(!queue.isEmpty())
{
//弹出一个节点 并访问
TreeNode node=queue.poll();
System.out.print(node.val);
//判断访问节点的左右孩子节点 先左后右 先进先出
if(node.left!=null) queue.offer(node.left);
if(node.right!=null) queue.offer(node.right);
}
}