题目链接:点击跳转
题意: 给出一个长度为n的序列a,问最少修改几个数字,能使得序列变成等差序列
思路:
-
枚举公差(我取了-300~300),用数组记录每个数字减去位置乘公差的值出现的次数,出现最多的次数就是在枚举范围内的最优解。
-
但是这个枚举不能太大(完整枚举2e5 * 1e5会超时),但是只枚举小范围不能保证正确,如样例3最优解的公差为-20000,那么我们可以遍历数据,取数据中的数的差值作为公差(注意公差要为整数),同样记录,并更新最优解(注意:因为记录的差为2个数的差,但后续遍历没有加上前面这个数,所以更新最优解时,要加上1)。
-
遍历数组不需要跑完整的数组,因为题目规定数据范围为1~1e5,因为前面枚举过了一个范围的值,那么现在要考虑的是没有被枚举过的公差,(这里以300为例), 超过300的公差,在数组里,最完整的情况是334个数构成的序列,300 * 334 = 100200,数组中是不会出现这个数的,所以没有必要遍历整个数组,因为在公差较大的时候,最长的等差数列长度为(极大值/公差),只需要遍历这个长度的序列即可。
-
时间复杂度O(2n*S + 2n * (N/S)), S为枚举范围,N为最大数据范围,这里S = 300, N =100000;(实测S为20也能AC)
代码如下:
#include<bits/stdc++.h>
#include <ostream>
using namespace std;
typedef long long ll;
#define endl '\n'
typedef pair<int, int> PII;
#define debug() cout.flush()
#define for0(i, a) for (ll i = 0; i < a; ++i)
#define REP(i, a, b) for (int i = a; i < b; ++i)
#define FOR(i, a, b) for (int i = a; i <= b; ++i)
#define REPC(i, a, b, c) for (ll i = a; i < b && i < c; ++i)
#define RREP(i, a, b) for (int i = a; i >= b; --i)
const ll MOD = 1e9 + 7;
const int INF = 0x3f3f3f3f;
const int MAXN = 3e7 + 5e5; //开大一点防止越界
const int N = 1e5;//数据范围
const int S = 300;//枚举范围
inline void init() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
}
int a[MAXN], b[MAXN * 2];
inline void solve() {
int n;
cin >> n;
REP (i, 0, n) {
cin >> a[i];
}
int ans = 1;
REP (i, -S, S + 1) {
REP (j, 0, n) {
++b[a[j] - i * j + MAXN];
}
REP (j, 0, n) {
ans = max(ans, b[a[j] - i * j + MAXN]);
b[a[j] - i * j + MAXN] = 0;
}
}
REP (i, 0, n) {
REP (j, i + 1, min(n, i + N / S + 1)) {
if (!((a[j] - a[i]) % (j - i))) {
int sub = (a[j] - a[i]) / (j - i);
if (sub >= -S && sub <= S) continue;
ans = max(ans, (++b[sub + MAXN]) + 1);
}
}
REP (j, i + 1, min(n, i + N / S + 1)) {
if (!((a[j] - a[i]) % (j - i))) {
int sub = (a[j] - a[i]) / (j - i);
b[sub + MAXN] = 0;
}
}
}
cout << n - ans << endl;
}
signed main() {
init();
solve();
return 0;
}