各种排序算法的时间空间复杂度

排序方式平均时间复杂度最坏时间复杂度最好时间复杂度空间复杂度稳定性备注
快速 O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n 2 ) O(n^2) O(n2) O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( l o g 2 n ) O(log_2n) O(log2n)不稳定最坏比较次数 n ( n − 1 ) 2 \frac {n(n-1)} 2 2n(n1)
归并 O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n ) O(n) O(n)稳定
O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( n l o g 2 ( n ) ) O(nlog_2(n)) O(nlog2(n)) O ( 1 ) O(1) O(1)不稳定
冒泡 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n) O ( 1 ) O(1) O(1)稳定最坏比较次数 n ( n − 1 ) 2 \frac {n(n-1)} 2 2n(n1)
选择 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) O ( 1 ) O(1) O(1)不稳定
插入 O ( n 2 ) O(n^2) O(n2) O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n) O ( 1 ) O(1) O(1)稳定最坏比较次数 n ( n − 1 ) 2 \frac {n(n-1)} 2 2n(n1)
希尔 O ( n ( 1.3 − 2 ) ) O(n^{(1.3-2)}) O(n(1.32)) O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n O ( 1 ) O(1) O(1)不稳定
基数* O ( d ( n + r ) ) O(d(n+r)) O(d(n+r))* O ( d ( n + r ) ) O(d(n+r)) O(d(n+r))* O ( d ( n + r ) ) O(d(n+r)) O(d(n+r))* O ( r ) O(r) O(r)稳定*d为位数,r为基数
计数 O ( n + k ) O(n+k) O(n+k) O ( n + k ) O(n+k) O(n+k) O ( n + k ) O(n+k) O(n+k) O ( n + k ) O(n+k) O(n+k)稳定k是整数的范围

note:仅仅用于记忆
不稳定排序:快选希堆(快速排序,选择排序,希尔排序,堆排序)

各种排序算法时间复杂度空间复杂度如下: 1. 冒泡排序(Bubble Sort): - 时间复杂度: - 最好情况:O(n),当输入数组已经有序时。 - 最坏情况:O(n^2),当输入数组逆序时。 - 空间复杂度:O(1),只需要常量级的额外空间。 2. 插入排序(Insertion Sort): - 时间复杂度: - 最好情况:O(n),当输入数组已经有序时。 - 最坏情况:O(n^2),当输入数组逆序时。 - 空间复杂度:O(1),只需要常量级的额外空间。 3. 选择排序(Selection Sort): - 时间复杂度:无论输入数组的顺序如何,都需要O(n^2)的时间。 - 空间复杂度:O(1),只需要常量级的额外空间。 4. 快速排序(Quick Sort): - 时间复杂度: - 最好情况:O(nlogn),当分区平衡时。 - 最坏情况:O(n^2),当分区极不平衡时。 - 空间复杂度:O(logn)到O(n),取决于递归调用栈的深度。 5. 归并排序(Merge Sort): - 时间复杂度:始终为O(nlogn),无论输入数组的顺序如何。 - 空间复杂度:O(n),需要额外的空间来存储临时数组。 6. 堆排序(Heap Sort): - 时间复杂度:始终为O(nlogn),无论输入数组的顺序如何。 - 空间复杂度:O(1),只需要常量级的额外空间。 7. 希尔排序(Shell Sort): - 时间复杂度:取决于增量序列的选择,最坏情况下为O(n^2)。 - 空间复杂度:O(1),只需要常量级的额外空间。 8. 计数排序(Counting Sort): - 时间复杂度:O(n+k),其中k是输入数组中的最大值。 - 空间复杂度:O(n+k),需要额外的空间来存储计数数组和排序后的结果。 9. 桶排序(Bucket Sort): - 时间复杂度:O(n+k),其中k是桶的数量。 - 空间复杂度:O(n+k),需要额外的空间来存储桶和排序后的结果。 10. 基数排序(Radix Sort): - 时间复杂度:O(d*(n+b)),其中d是数字的最大位数,b是基数(例如十进制中的10)。 - 空间复杂度:O(n+b),需要额外的空间来存储桶和排序后的结果。 请注意,以上复杂度是基于最坏情况的分析结果,实际运行时间可能受到具体实现的影响。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值