题意:要我们从m个区间中选任意个区间进行减一 操作 保证最后整个区间极差最大
首先我们思考一下 当我们选的区间包含了最小值的时候 有两种情况:
- 最大值包含在内 极差不变
- 最大值不包含在内 极差+1
可见当最小值包含在一个区间内时,答案不会变差 那我们直接枚举区间 然后看当前最小值在不在这个区间不久行了 这样显然不行 其一 最小值有多个 其二也是关键一点 最小值不一定保持不变
例如一个序列 5 1 9 2 7 一开始最小值的位置是2
假如有三个区间操作 分别为 1 2, 4 4, 4 5, 4 4 如果我们只选1 2 的话 最后极差就是9-0=9 但如果我们 选 4 4, 4 5, 4 4最后极差 9-(-1)=10 显然更优 我们不知道最终最小值的位置在哪 所有我们要枚举这个位置
我们需要用到扫描线的思想,对于每条线段 以左端点为起始点,右端点为结束点。 那么我们用线段树维护最大值 ,当我们枚举的点为某些线段的左端点(开始点)时,我们把这些线段加进去,计算以当前点位最小值的答案,计算完后 把以当前点为右端点(结束点)的线段去掉 这样就能保证计算答案的时候 覆盖当前点的线段都算进去了 我们维护可以得到最大极差的位置,最后输出包含这个位置的线段编号就行 代码:
#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+100;
int n,m,sum[N<<2],lazy[N<<2];
vector<int>st[N],ed[N];
int l[302],r[302];
void pushup(int id){
sum[id]=max(sum[id<<1],sum[id<<1|1]);
}
void pushdown(int id){
if(lazy[id]){
sum[id<<1]+=lazy[id];
sum[id<<1|1]+=lazy[id];
lazy[id<<1]+=lazy[id];
lazy[id<<1|1]+=lazy[id];
lazy[id]=0;
return;
}
}
void build(int id,int l,int r){
if(l==r){
scanf("%d",&sum[id]);
return;
}
int mid = l+r>>1;
build(id<<1,l,mid);build(id<<1|1,mid+1,r);
pushup(id);
}
void update(int id,int l,int r,int L,int R,int v){
if(L<=l&&R>=r){
sum[id]+=v;
lazy[id]+=v;
return;
}
pushdown(id);
int mid = l+r>>1;
if(L<=mid) update(id<<1,l,mid,L,R,v);
if(R>mid) update(id<<1|1,mid+1,r,L,R,v);
pushup(id);
}
int query(int id,int l,int r,int L,int R){
if(L<=l&&R>=r){
return sum[id];
}
pushdown(id);
int mid = l+r>>1,ans=-1e9;
if(L<=mid) ans=max(ans,query(id<<1,l,mid,L,R));
if(R>mid) ans=max(ans,query(id<<1|1,mid+1,r,L,R));
return ans;
}
int main(){
scanf("%d%d",&n,&m);
build(1,1,n);
for(int i = 1; i <= m; i++) {
scanf("%d%d",&l[i],&r[i]);
st[l[i]].push_back(r[i]);
ed[r[i]].push_back(l[i]);
}
int ans = 0,pos = 1;
for(int i = 1; i <= n; i++){
for(auto v:st[i]){
update(1,1,n,i,v,-1);
}
int now = sum[1]-query(1,1,n,i,i);
//printf("i=%d now=%d\n",i,now);
if(ans<now) ans=now,pos=i;
for(auto v:ed[i]){
update(1,1,n,v,i,1);
}
}
vector<int>f;
for(int j = 1; j <= m; j++){
if(l[j]<=pos&&r[j]>=pos) f.push_back(j);
}
printf("%d\n",ans);
printf("%d\n",f.size());
for(auto v:f){
printf("%d ",v);
}
puts("");
return 0;
}