CodeForces - 1108E2 线段树+扫描线思想

题意:要我们从m个区间中选任意个区间进行减一 操作 保证最后整个区间极差最大

首先我们思考一下   当我们选的区间包含了最小值的时候  有两种情况:

  1. 最大值包含在内 极差不变
  2. 最大值不包含在内 极差+1

可见当最小值包含在一个区间内时,答案不会变差    那我们直接枚举区间 然后看当前最小值在不在这个区间不久行了  这样显然不行  其一  最小值有多个  其二也是关键一点  最小值不一定保持不变        

例如一个序列   5 1 9 2 7   一开始最小值的位置是2    

假如有三个区间操作 分别为  1 2, 4 4, 4 5,  4 4 如果我们只选1 2 的话 最后极差就是9-0=9   但如果我们 选 4 4, 4 5, 4 4最后极差 9-(-1)=10  显然更优  我们不知道最终最小值的位置在哪  所有我们要枚举这个位置

我们需要用到扫描线的思想,对于每条线段  以左端点为起始点,右端点为结束点。 那么我们用线段树维护最大值 ,当我们枚举的点为某些线段的左端点(开始点)时,我们把这些线段加进去,计算以当前点位最小值的答案,计算完后 把以当前点为右端点(结束点)的线段去掉   这样就能保证计算答案的时候 覆盖当前点的线段都算进去了  我们维护可以得到最大极差的位置,最后输出包含这个位置的线段编号就行 代码:

#include<bits/stdc++.h>
using namespace std;
const int N = 1e5+100;
int n,m,sum[N<<2],lazy[N<<2];
vector<int>st[N],ed[N];
int l[302],r[302]; 
void pushup(int id){
	sum[id]=max(sum[id<<1],sum[id<<1|1]);
}
void pushdown(int id){
	if(lazy[id]){
		sum[id<<1]+=lazy[id];
		sum[id<<1|1]+=lazy[id];
		lazy[id<<1]+=lazy[id];
		lazy[id<<1|1]+=lazy[id];
		lazy[id]=0;
		return;
	}
}
void build(int id,int l,int r){
	if(l==r){
		scanf("%d",&sum[id]);
		return;
	}
	int mid = l+r>>1;
	build(id<<1,l,mid);build(id<<1|1,mid+1,r);
	pushup(id);
}
void update(int id,int l,int r,int L,int R,int v){
	if(L<=l&&R>=r){
		sum[id]+=v;
		lazy[id]+=v;
		return;
	}
	pushdown(id); 
	int mid = l+r>>1;
	if(L<=mid) update(id<<1,l,mid,L,R,v);
	if(R>mid) update(id<<1|1,mid+1,r,L,R,v);
	pushup(id); 
}
int query(int id,int l,int r,int L,int R){
	if(L<=l&&R>=r){
		return sum[id];
	}
	pushdown(id);
	int mid = l+r>>1,ans=-1e9;
	if(L<=mid) ans=max(ans,query(id<<1,l,mid,L,R));
	if(R>mid) ans=max(ans,query(id<<1|1,mid+1,r,L,R));
	return ans;
}
int main(){
	scanf("%d%d",&n,&m);
	build(1,1,n);
	for(int i = 1; i <= m; i++) {
		scanf("%d%d",&l[i],&r[i]);
		st[l[i]].push_back(r[i]);
		ed[r[i]].push_back(l[i]);
	}
	int ans = 0,pos = 1;
	for(int i = 1; i <= n; i++){
		for(auto v:st[i]){
			update(1,1,n,i,v,-1);
		}
		int now = sum[1]-query(1,1,n,i,i);
		//printf("i=%d now=%d\n",i,now);
		if(ans<now) ans=now,pos=i;
		for(auto v:ed[i]){
			update(1,1,n,v,i,1);
		}
	}
	vector<int>f;
	for(int j = 1; j <= m; j++){
		if(l[j]<=pos&&r[j]>=pos) f.push_back(j);	
	}
	printf("%d\n",ans);
	printf("%d\n",f.size());
	for(auto v:f){
		printf("%d ",v);
	}
	puts("");
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值