CH 0103 最短Hamilton路径 状压dp入门

题目链接:CH0103

0103 最短Hamilton路径 0x00「基本算法」例题

描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式

第一行一个整数n。

接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。

对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式

一个整数,表示最短Hamilton路径的长度。

样例输入

4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0

样例输出

4

样例解释

从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4

状态压缩dp,乍一看像最短路吧,但是最短路怎么保证0~n-1这些点都遍历一次呢  显然这题得暴力的去遍历 但是又不能太暴力 在任意时刻如何表示哪些点被经过 哪些点没有被经过  我们用一个 n 位的二进制数,若第 i 个点被经过了,这个 n 位数的第 i 位则为1,反之则为0。我们用f[i][j]表示点经过的状态为 i ,我们刚好经过点 j 时的最小长度。我们考虑一下状态转移方程

f[i][j]=min(f[i][j],f[i xor (1<<j)][k]+weight[k][j])

初始 f[1][0]=0  表示状态为1(在0位置,最低位为1),目前处于起点0,最短路径长为0,其它为正无穷 

#include<bits/stdc++.h>
using namespace std;
const int N = 20;
int weight[N][N],f[1<<N][N];
int main(){
	int n;
	scanf("%d",&n);
	for(int i = 0; i < n; i++)
	for(int j = 0; j < n; j++) 
	scanf("%d",&weight[i][j]);
	memset(f,0x3f,sizeof(f));
	f[1][0]=0;
	for(int i = 1; i < (1<<n); i++)
	for(int j = 0; j < n; j++) 
	if((i>>j&1))
	for(int k = 0; k < n; k++)
	f[i][j]=min(f[i][j],f[i^(1<<j)][k]+weight[k][j]);
	printf("%d\n",f[(1<<n)-1][n-1]);
	return 0;
}

 

哈密顿回路是一种经过图中每个节点一次且仅一次的回路。哈密顿回路问题是一个NP完全问题,因此没有已知的多项式时间算法可以解决这个问题。不过,可以使用启发式算法来解决近似的问题。 下面是一个使用Java实现的近似算法: ```java import java.util.*; public class HamiltonianPath { private static int[][] graph; // 图 private static int[] path; // 存储路径 private static boolean[] visited; // 标记是否访问过 private static int n; // 节点数 public static void main(String[] args) { Scanner sc = new Scanner(System.in); n = sc.nextInt(); graph = new int[n][n]; path = new int[n]; visited = new boolean[n]; // 构建图 for(int i = 0; i < n; i++) { for(int j = 0; j < n; j++) { graph[i][j] = sc.nextInt(); } } // 从第一个节点出发 path[0] = 0; visited[0] = true; if(findHamiltonianPath(1)) { // 打印路径 for(int i = 0; i < n; i++) { System.out.print(path[i] + " "); } } else { System.out.println("No Hamiltonian Path exists"); } } // 查找哈密顿路径 private static boolean findHamiltonianPath(int pos) { // 如果已经遍历完所有节点 if(pos == n) { // 判断最后一个节点是否与第一个节点相邻 if(graph[path[pos - 1]][path[0]] == 1) { return true; } else { return false; } } // 遍历其它节点 for(int i = 1; i < n; i++) { if(isValid(i, pos)) { path[pos] = i; visited[i] = true; if(findHamiltonianPath(pos + 1)) { return true; } // 回溯 visited[i] = false; } } return false; } // 判断节点是否可达 private static boolean isValid(int node, int pos) { // 如果节点已经被访问过,返回false if(visited[node]) { return false; } // 如果前一个节点与当前节点不相邻,返回false if(graph[path[pos - 1]][node] == 0) { return false; } return true; } } ``` 在这个算法中,我们使用了回溯的方法来查找哈密顿路径。我们从第一个节点开始,依次尝试访问其它节点,直到找到一条哈密顿路径或者遍历完所有节点。在查找过程中,我们使用visited数组来标记节点是否已经被访问过,使用path数组来存储路径。isValid方法用来判断节点是否可达。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值