因为本题支持 离线 所以可以用莫队的算法 常见的套路就是把树变成一个序列 而要解决这个题 我们需要使用欧拉序 (感觉更像是括号序列)
从何俞均大佬手中偷来了一个图
这棵树的欧拉序是: 1 2 4 5 5 4 2 3 6 6 7 7 3 1
(一个点第一次出现 视为进入的位置st 第二次出现视为离开的位置ed)
设 u,v是我们要查询的路径 假设 u的遍历顺序(在欧拉序中进入的位置)小于v
如果 u=lca(u,v) 那么 我们选择的遍历序列是 st[u],st[v]
如图中的 1和3 (注意出现两次就抵消了 类似括号匹配一样) 我们得到序列 1 2 4 5 5 4 2 3 其中 2 4 5 都抵消了 只得到了1 3
如果 u!=lca(u,v) 那么 我们选择的遍历序列是 ed[u],st[v]
如图中的 2和7 我们得到序列 2 3 6 6 7 其中6抵消了 我们得到 2 3 7 我们发现 lca(u,v) 并没有算进来 因此我们还要加上lca(u,v)
由欧拉序的性质可知 这样是正确的 对于一个点我们有没有用过 可以用一个used数组标记 如果用过了 那么当前操作就是删除 否则当前操作就是添加 和原来的莫队略有不同
另外关于括号序列和欧拉序有一篇博客讲了两者的一些用法 仅供参考:
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+100;
int val[N],n,m,tot,st[N],ed[N],dep[N],fa[N][33],lg[N],ol[N];
int h[N],cur,nex[N<<1],to[N<<1],Hash[N],cnt[N],temp,ans[N];
bool used[N];
struct node{
int l,r,blk,lca,id;
bool operator < (const node &a){
if(blk!=a.blk) return blk<a.blk;
if(blk&1) return r<a.r;
else return r>a.r;
}
}q[N];
void add_edge(int x,int y){
to[++cur]=y;nex[cur]=h[x];h[x]=cur;
}
inline int in(){
int w=0,x=0;char c=0;
while(c>'9'||c<'0') w|=c=='-',c=getchar();
while(c<='9'&&c>='0') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return w?-x:x;
}
void dfs(int u,int f){
dep[u]=dep[fa[u][0]=f]+1;
for(int i = 1; i <= lg[dep[u]]; i++) fa[u][i]=fa[fa[u][i-1]][i-1];
st[u]=++tot;ol[tot]=u;
for(int i = h[u]; i; i = nex[i]){
int v = to[i];
if(v==f) continue;
dfs(v,u);
}
ed[u]=++tot;ol[tot]=u;
}
int lca(int x,int y){
if(dep[x]<dep[y]) swap(x,y);
while(dep[x]>dep[y]) x=fa[x][lg[dep[x]-dep[y]]-1];
if(x==y) return x;
for(int i = lg[dep[x]-1]; i >= 0; i--)
if(fa[x][i]!=fa[y][i])
x=fa[x][i],y=fa[y][i];
return fa[x][0];
}
void cal(int x){
if(!used[x]) temp+=(++cnt[val[x]]==1);
else temp-=(--cnt[val[x]]==0);
used[x]^=1;
}
int main(){
n=in(),m=in();
for(int i = 1; i <= n; i++) val[i]=in(),Hash[i]=val[i],lg[i]=(1<<lg[i-1]==i)+lg[i-1];
sort(Hash+1,Hash+1+n);
for(int i = 1; i <= n; i++)
val[i]=lower_bound(Hash+1,Hash+1+n,val[i])-Hash;
for(int i = 1; i < n; i++){
int u,v;
u=in(),v=in();
add_edge(u,v);add_edge(v,u);
}
dfs(1,0);
int sqn=(int)sqrt(n);
for(int i = 1; i <= m; i++){
int x,y;
x=in(),y=in();
if(st[x]>st[y]) swap(x,y);
int lc=lca(x,y);
q[i].id=i;
if(lc==x){
q[i].l=st[x];
q[i].r=st[y];
q[i].blk=(q[i].l-1)/sqn+1;
q[i].lca=0;
}else{
q[i].l=ed[x];
q[i].r=st[y];
q[i].blk=(q[i].l-1)/sqn+1;
q[i].lca=lc;
}
}
sort(q+1,q+1+m);
int l=1,r=0;
for(int i = 1; i <= m; i++){
while(l<q[i].l) cal(ol[l++]);
while(l>q[i].l) cal(ol[--l]);
while(r<q[i].r) cal(ol[++r]);
while(r>q[i].r) cal(ol[r--]);
if(q[i].lca) cal(q[i].lca);
ans[q[i].id]=temp;
if(q[i].lca) cal(q[i].lca);
}
for(int i = 1; i <= m; i++) printf("%d\n",ans[i]);
return 0;
}