SP10707 COT2 - Count on a tree II 莫队+欧拉序

因为本题支持 离线 所以可以用莫队的算法  常见的套路就是把树变成一个序列  而要解决这个题 我们需要使用欧拉序 (感觉更像是括号序列)

从何俞均大佬手中偷来了一个图

这棵树的欧拉序是:  1 2 4 5 5 4 2 3 6 6 7 7 3 1    

(一个点第一次出现 视为进入的位置st  第二次出现视为离开的位置ed)

设 u,v是我们要查询的路径  假设 u的遍历顺序(在欧拉序中进入的位置)小于v 

如果 u=lca(u,v)   那么  我们选择的遍历序列是 st[u],st[v] 

如图中的 1和3 (注意出现两次就抵消了 类似括号匹配一样) 我们得到序列 1 2 4 5 5 4 2 3   其中 2 4 5 都抵消了  只得到了1 3  

如果 u!=lca(u,v)  那么 我们选择的遍历序列是 ed[u],st[v] 

如图中的 2和7  我们得到序列 2 3 6 6 7  其中6抵消了  我们得到 2 3 7 我们发现 lca(u,v) 并没有算进来 因此我们还要加上lca(u,v)    

由欧拉序的性质可知 这样是正确的  对于一个点我们有没有用过 可以用一个used数组标记  如果用过了 那么当前操作就是删除  否则当前操作就是添加  和原来的莫队略有不同

另外关于括号序列和欧拉序有一篇博客讲了两者的一些用法 仅供参考:

https://www.cnblogs.com/pealicx/p/6859901.html

#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+100;
int val[N],n,m,tot,st[N],ed[N],dep[N],fa[N][33],lg[N],ol[N];
int h[N],cur,nex[N<<1],to[N<<1],Hash[N],cnt[N],temp,ans[N];
bool used[N];
struct node{
	int l,r,blk,lca,id;
	bool operator < (const node &a){
		if(blk!=a.blk) return blk<a.blk;
		if(blk&1) return r<a.r;
		else return r>a.r; 
	}
}q[N];
void add_edge(int x,int y){
	to[++cur]=y;nex[cur]=h[x];h[x]=cur;
}
inline int in(){
	int w=0,x=0;char c=0;
	while(c>'9'||c<'0') w|=c=='-',c=getchar();
	while(c<='9'&&c>='0') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return w?-x:x;
}
void dfs(int u,int f){
	dep[u]=dep[fa[u][0]=f]+1;
	for(int i = 1; i <= lg[dep[u]]; i++) fa[u][i]=fa[fa[u][i-1]][i-1];
	st[u]=++tot;ol[tot]=u;
	for(int i = h[u]; i; i = nex[i]){
		int v = to[i];
		if(v==f) continue;
		dfs(v,u);
	}
	ed[u]=++tot;ol[tot]=u;
}
int lca(int x,int y){
	if(dep[x]<dep[y]) swap(x,y);
	while(dep[x]>dep[y]) x=fa[x][lg[dep[x]-dep[y]]-1];
	if(x==y) return x;
	for(int i = lg[dep[x]-1]; i >= 0; i--)
	if(fa[x][i]!=fa[y][i])
	x=fa[x][i],y=fa[y][i];
	return fa[x][0];
}
void cal(int x){
	if(!used[x])  temp+=(++cnt[val[x]]==1);
	else temp-=(--cnt[val[x]]==0);
	used[x]^=1;
}
int main(){
	n=in(),m=in();
	for(int i = 1; i <= n; i++) val[i]=in(),Hash[i]=val[i],lg[i]=(1<<lg[i-1]==i)+lg[i-1];
	sort(Hash+1,Hash+1+n);
	for(int i = 1; i <= n; i++)
	val[i]=lower_bound(Hash+1,Hash+1+n,val[i])-Hash;
	for(int i = 1; i < n; i++){
		int u,v;
		u=in(),v=in();
		add_edge(u,v);add_edge(v,u);
	}
	dfs(1,0);
	int sqn=(int)sqrt(n);
	for(int i = 1; i <= m; i++){
		int x,y;
		x=in(),y=in();
		if(st[x]>st[y]) swap(x,y);
		int lc=lca(x,y);
		q[i].id=i;
		if(lc==x){
			q[i].l=st[x];
			q[i].r=st[y];
			q[i].blk=(q[i].l-1)/sqn+1;
			q[i].lca=0;
		}else{
			q[i].l=ed[x];
			q[i].r=st[y];
			q[i].blk=(q[i].l-1)/sqn+1;
			q[i].lca=lc;
		}
	}
	sort(q+1,q+1+m);
	int l=1,r=0;
	for(int i = 1; i <= m; i++){
		while(l<q[i].l) cal(ol[l++]);
		while(l>q[i].l)	cal(ol[--l]);
		while(r<q[i].r) cal(ol[++r]);
		while(r>q[i].r) cal(ol[r--]);
		if(q[i].lca) cal(q[i].lca);
		ans[q[i].id]=temp;
		if(q[i].lca) cal(q[i].lca);
	}
	for(int i = 1; i <= m; i++) printf("%d\n",ans[i]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值