ES模糊查询wildcard的替代方案,nGram + match_phrase

背景

1.ES模糊查询wildcard查询极耗机器CPU资源,查询耗时高,当并发量高时影响ES其它进程。
2.用户实际的模糊查询需求大多是左右模糊匹配。

可行性分析

match_phrase能够实现词组查询。

比如brown fox会返回匹配…brown fox…的结果,此结果与wildcard查询传入brown fox的查询结果一致。相当于我们通过match_phrase实现wildcard查询效果,但此时只满足一些特许的模糊查询需求。
那如何对match_phrase的功能进行增强,让其能够满足所有条件?
从上面的查询示例可以看出,brown fox会返回匹配…brown fox…的结果,其根本原因在于索引时ES将…brown fox…分词成了brown,fox等单词。所以只要我们能够控制ES分词效果,将会最终满足我们的需求。而ES提供了丰富的分词功能。

nGram分词能够实现按指定长度对文本进行分词。

nGram可以指定min_gram,max_gram参数实现不同的分词效果。
例如:min_gram,max_gram配置为5时,quick.brown.fox分词后会产生quick,uick.,ick.b,ck.br,k.bro,.brow,brown,rown.,own.f,wn.fo,n.fox。
这时match_phrase会达到什么效果了?
a.用户输入quick,brown,k.bro等都能够返回quick.brown.fox。
b.用户输入brown.fox,brown.fox会被分词成brown,rown.,own.f等,此时同样会返回quick.brown.fox。
c.用户输入fox(长度小于nGram分词配置的分词长度时),不会返回任何结果。

如何正确返回查询条件长度小于5时的结果

利用nGram分词 + term查询可以实现所需查询效果。
nGram分词配置:min_gram配置为1,max_gram配置为4。例如quick将会被分词为q,u,i,… quic,uick。
term查询会对用户输入的条件进行精确匹配,比如输入uic,会返回quick。

方案

查询条件长度小于5时:使用nGram分词 + term查询
查询条件长度大于等于5时:使用nGram分词 + match_phrase查询

实施

创建索引
PUT index_text_1
{
  "settings": {
    "analysis": {
      "analyzer": {
        "ngram_analyzer_short": {
          "filter": "lowercase",
          "tokenizer": "ngram_tokenizer_short"
        },
        "ngram_analyzer_long": {
          "filter": "lowercase",
          "tokenizer": "ngram_tokenizer_long"
        }
      },
      "tokenizer": {
        "ngram_tokenizer_short": {
          "type": "nGram",
          "min_gram": "1",
          "max_gram": "4"
        },
        "ngram_tokenizer_long": {
          "type": "nGram",
          "min_gram": "5",
          "max_gram": "5"
        }
      }
    }
  },
  "mappings": {
    "title": {
      "properties": {
        "char": {
          "type": "keyword",
          "fields": {
            "long_char": {
              "type": "text",
              "analyzer": "ngram_analyzer_long"
            },
            "short_char": {
              "type": "text",
              "analyzer": "ngram_analyzer_short"
            }
          }
        }
      }
    }
  }
}
新增数据
POST /index_text_1/_doc/_bulk
{"index":{"_id":1}}  
{"char":"nHRSPkkXLGm6UsmRbRBFQYRCRXpp6CXrnBiqSR"} 
{"index":{"_id":2}}
{"char":"quick.brown.fox"}
{"index":{"_id":3}}
{"char":"elasticsearch"}
查询语句

查询条件长度大于等于5时

GET index_text_1/_search
{
    "query": {
        "match_phrase": {
            "char.long_char": {
                "query": "UsmRbRBFQY"
            }
        }
    }
}

在这里插入图片描述

查询条件长度小于5时

GET index_text_1/_search
{
    "query": {
        "term": {
            "char.short_char": {
                "value": "fox"
            }
        }
    }
}

在这里插入图片描述

思考

查询条件长度该设置成多少?
值太大,占用的存储资源就多(主要是short_char字段);值太小,long_char字段分词被分的太细,match_phrase查询耗时就会增加。

### 回答1: Elasticsearch 是一个开源搜索引擎,它提供了多种查询方式。 match_phrase: 是短语匹配,它会把查询的文本作为一个整体来匹配,保证匹配的文本顺序一致。 wildcard: 通配符匹配,可以使用 * 和 ? 匹配任意字符。 match: 是文本匹配,它会对查询的文本进行分词,然后匹配分词后的文本。 总结: match_phrase: 短语匹配 wildcard: 通配符匹配 match: 文本匹配 三者在查询时使用场景不同,根据需求选择不同查询方式。 ### 回答2: Elasticsearch是一种开源的搜索引擎,可以实现高效的全文搜索和分析。在Elasticsearch中,match_phrasewildcardmatch是三种不同的查询方式,它们之间有以下区别: 1. match_phrase(短语匹配):match_phrase是一种精确短语匹配查询,它可以匹配包含指定词组的文档。match_phrase查询将文本拆分为词项,然后按照给定词序进行匹配。例如,当使用match_phrase查询搜索“quick brown fox”时,只有包含这个词组并按照这个顺序出现的文档才会被返回。 2. wildcard(通配符查询):wildcard是一种基于通配符的模糊查询,用于匹配满足指定模式的文档。通配符可以使用“*”匹配任意字符序列,或者使用“?”匹配单个字符。例如,当使用wildcard查询搜索“br?wn”时,可以匹配到“brown”或“br0wn”等词项。 3. match(字段匹配):match是一种基于字段的查询方式,用于匹配指定字段中包含指定关键词的文档。match查询默认会进行分词处理,将搜索词分割为词项,并在指定字段的倒排索引中进行匹配。例如,当使用match查询搜索“quick brown”时,可以匹配到包含这两个词的文档,不要求词序。 总而言之,match_phrase是一个完全匹配词组的查询方式,而wildcard可以进行模糊匹配,而match是基于字段的分词匹配。根据实际需求和查询的灵活性要求,可以选择适当的查询方式来满足搜索需求。 ### 回答3: 在Elasticsearch中,match_parse、wildcardmatch都是用于查询的不同方式。 首先,match_parse是一种全文检索查询,它将搜索关键词作为一个短语进行处理。它会对搜索关键词进行分析和处理,然后返回与搜索关键词最匹配的文档。例如,当搜索关键词是"quick brown fox"时,match_parse会将其视为一个短语,并搜索包含该短语的文档。 其次,wildcard是一种通配符查询,它可以通过使用通配符(如*或?)来匹配文档中的任意字符。它主要用于查找具有相似模式或形式的文档。例如,当搜索关键词是"qu*ck"时,wildcard会匹配到诸如"quick"、"quack"或"quarterback"等单词。 最后,match是一种基于字段的查询方式。它会对字段的值进行分析和处理,然后与搜索关键词进行匹配。它支持模糊匹配和纠错功能,可以根据搜索关键词的相似度进行匹配。例如,当搜索关键词是"quick brown foks"时,match会自动尝试纠正拼写错误,并匹配到包含诸如"quick", "brown"或"fox"等单词的文档。 综上所述,match_parse是一种全文检索查询,它将搜索关键词作为一个短语来处理;wildcard是一种通配符查询,用于匹配具有相似模式的文档;而match是一种基于字段的查询,支持模糊匹配和纠错功能。它们在匹配方式、搜索关键词处理和查询类型等方面略有不同。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值