数据分析和常用拆解方法-1

数据分析

数据分析三个步骤是观测实验应用

观测

观测是指对事物形成客观量化的认知。例如报表、图表等。

观测包括观察测量

观察

采集数据、存储数据、展示数据

采集数据可以通过

a、解析系统日志
b、埋点获取新数据
c、传感器采集
d、爬虫(太过分容易被抓)
e、API

测量

设定标准、发现异常、研究关系

实验

提出假设、验证假设

问题:
a、如何在数据量少的时候设计数据实验?
b、如何在无法同时测试两个版本时对比数据?

应用

a、基于数据反馈不断迭代更新产品和业务策略
b、基于数据训练算法,让机器自动化完成工作

拆解方法

MECE原则

各部分之间相互独立不重复,完全穷尽不遗漏。

流程拆解法

一种分析和优化工作流程的方法,通过将复杂的工作流程拆分成若干个简单的步骤或环节,以便更好地理解、管理和优化整个流程。这种方法在项目管理、生产制造、软件开发和服务行业中都有广泛应用。
明确目标

确定要解决的问题或实现的目标(例如:提升订单处理效率、优化用户注册流程)。

关键问题:为什么要拆解这个流程?最终期望是什么?

界定流程范围

确定流程的起点(输入)和终点(输出),例如:

起点:用户提交订单

终点:商品交付完成

避免范围过宽或过窄,聚焦核心环节。

分解主流程

将流程拆解为关键阶段(通常不超过5-7步),例如电商订单处理流程:

用户下单 → 支付确认 → 库存分配 → 打包发货 → 物流跟踪 → 用户签收

细化子步骤

对每个阶段进一步拆解,例如“支付确认”可能包含:

支付接口调用 → 银行验证 → 订单状态更新 → 通知用户

工具:流程图、泳道图、思维导图。

识别关键节点与依赖关系

标注瓶颈点(如耗时环节)、风险点(如支付失败)、决策点(如库存不足时的处理)。

分析步骤间的依赖关系(如必须先支付成功才能发货)。

优化与验证

删除冗余步骤(如重复审核)、合并同类操作、调整顺序。

通过模拟测试或A/B测试验证优化效果。

标准化与文档化

输出流程图、操作手册或SOP(标准作业程序),便于团队执行和迭代。

注意事项

避免过度拆解:步骤过细可能导致复杂度上升,保留关键节点即可。

动态调整:随着业务变化(如新政策、技术升级)更新流程。

跨部门协作:复杂流程需多角色参与拆解(如技术、运营、客服)。

二分法

是一种通过将复杂问题或数据集拆分为两个互斥且互补的维度,从而简化分析、聚焦核心矛盾的方法。其核心思想是通过分类、对比或分层,将不确定性转化为可量化、可操作的决策依据。以下是该方法的核心框架、应用场景及实践案例。

互斥性:拆分后的两类必须完全独立(如“是/否”、“成功/失败”)。

穷尽性:所有可能性必须被覆盖,避免遗漏中间状态。

可量化:两类数据需具备明确的划分标准(如阈值、规则)。

明确目标与拆分维度
目标:例如提升转化率、降低流失率、识别高价值用户。

拆分维度:根据业务需求选择关键变量,例如:

用户维度:活跃用户 vs 沉默用户

行为维度:付费行为 vs 未付费行为

时间维度:工作日 vs 周末

定义划分标准
定量标准:阈值(如消费金额>100元为高价值用户)、统计分位数(如前20%用户)。

定性标准:规则(如用户浏览商品详情页超过3次为高意向)。

数据切割与对比分析
将数据集按标准拆分为两类,对比关键指标差异:

转化率、留存率、ARPU(每用户平均收入)等。

工具:交叉分析、假设检验(如卡方检验、T检验)。

归因分析与策略制定
识别两类数据的差异驱动因素(如功能使用频率、渠道来源)。

针对性设计策略:

正向强化:扩大高价值群体的优势(如定向推送优惠券)。

负向修复:改善低效环节(如优化未注册用户的引导流程)。

迭代验证与动态调整
通过A/B测试验证策略效果(如新注册流程 vs 旧流程)。

根据结果调整分类标准或策略方向。

场景1:用户分群与精准运营
问题:如何提升用户复购率?

二分法应用:

将用户分为“近30天复购用户” vs “未复购用户”。

分析两类用户的特征差异:

复购用户:60%来自社交裂变渠道,偏好折扣商品。

未复购用户:70%来自广告投放,首单客单价低。

策略:

对广告渠道用户推送首单满减券,提升客单价。

对社交渠道用户推送限时折扣,刺激二次购买。

场景2:异常检测与风险控制
问题:如何识别金融交易中的欺诈行为?

二分法应用:

将交易分为“正常” vs “可疑”。

定义可疑交易规则(如单笔金额>5万元、异地IP登录)。

对可疑交易进行人工复核或二次验证,降低风险。

场景3:产品功能优化决策
问题:是否上线“智能推荐”功能?

二分法应用:

A/B测试:对照组(无推荐) vs 实验组(有推荐)。

对比点击率、转化率、GMV等指标。

决策:实验组GMV提升18% → 全量上线功能。

数据分析二分法通过“分类→对比→归因”的链条,将复杂问题转化为可操作的二元决策,适用于快速定位问题、制定优先级策略。需注意避免过度简化,结合业务实际动态调整分类逻辑,以实现更精准的数据驱动决策。

象限拆解法

是一种通过定义两个关键维度,将复杂问题或数据划分为四个象限,从而识别优先级、制定差异化策略的经典方法。其核心在于通过交叉分析,将抽象问题转化为可视化的行动指南,广泛应用于用户分群、资源分配、风险管理等领域。

本质特征

二维交叉:选择两个独立且具有业务意义的维度(如“重要性”与“紧急性”、“成本”与“收益”)。

四象限划分:每个维度分为高低两档,形成四个象限,对应不同的策略方向。

直观决策:通过可视化矩阵快速定位优先级,平衡短期与长期目标。

适用场景

用户分层运营:如高价值-高活跃用户 vs 低价值-低活跃用户。

需求优先级排序:如产品功能开发的“价值-难度”矩阵。

市场机会分析:如“市场规模-竞争强度”矩阵。

风险管理:如“发生概率-影响程度”矩阵。

象限拆解法的实施步骤
1. 明确分析目标
确定核心问题(如优化资源分配、识别高潜力用户)。

示例:

目标:提升广告投放ROI,减少低效预算浪费。

2. 选择两个关键维度
维度需满足:

独立性:两个维度不高度相关(如避免同时用“点击率”和“转化率”)。

可量化:能够通过数据或规则明确划分高低档。

常用维度组合:

价值维度:用户生命周期价值(LTV)、收入贡献、活跃度。

成本维度:获客成本、维护成本、时间成本。

风险维度:失败概率、影响范围、可控性。

示例:

广告投放分析维度:

维度1:广告转化率(高/低)

维度2:单次转化成本(高/低)

3. 定义划分标准
定量标准:基于数据分布(如中位数、平均值、行业基准)。

定性标准:基于业务经验(如战略重要性、客户反馈)。

示例:

广告转化率高低划分:

高转化率:≥行业平均转化率(5%)

低转化率:<5%
单次转化成本高低划分:

高成本:≥预算上限(50元/转化)

低成本:<50元/转化

4. 数据分类与象限定位
将数据点(如用户、产品、项目)映射到四个象限。

工具:Excel散点图、Tableau矩阵图、Python Matplotlib。

示例:广告投放数据分类结果

广告渠道 转化率 单次转化成本 象限定位
渠道A 8% 40元 高转化率-低成本
渠道B 3% 60元 低转化率-高成本
渠道C 6% 30元 高转化率-低成本
5. 制定象限策略
针对每个象限设计差异化行动方案:

象限 策略方向 示例行动
高转化率-低成本 最大化投入(核心资源) 增加预算、扩大覆盖人群、复制成功模式
高转化率-高成本 优化效率(降本提效) 优化素材质量、调整出价策略、测试新定向
低转化率-低成本 选择性试验(探索潜力) A/B测试创意、小规模投放观察效果、挖掘长尾需求
低转化率-高成本 淘汰或重构(止损聚焦) 暂停投放、分析失败原因、重新定位受众
6. 验证与迭代
监控策略执行后的指标变化(如ROI提升、成本下降)。

动态调整象限划分标准(如市场变化后更新成本阈值)。
总结
象限拆解法通过“二维交叉→四象限→差异化策略”的路径,将复杂问题转化为清晰的可执行方案。其核心价值在于聚焦优先级与资源高效分配,适用于需快速决策的场景。实践中需注意:

维度选择需直击业务痛点;

策略制定需结合数据与经验;

保持动态迭代,避免刻板应用。

杜邦分析法(公式)

ROE(净资产收益率)= 净利润 / 平均股东权益
通过逐层拆解,揭示影响ROE的三大核心驱动因素:

盈利能力(销售净利率)

运营效率(总资产周转率)

财务杠杆(权益乘数)

ROE =销售净利率×总资产周转率×权益乘数

销售净利率:反映企业“赚钱能力”(每元收入转化为利润的比例)。

总资产周转率:反映企业“用钱效率”(资产创造收入的效率)。

权益乘数:反映企业“借钱能力”(财务杠杆对ROE的放大效应)。

在这里插入图片描述
杜邦分析法的实施步骤
1. 计算ROE并初步诊断
公式:ROE = 净利润 / 平均股东权益

关键问题:

ROE是否高于行业平均水平?

历史趋势是上升还是下降?

2. 三因素拆解与对标分析
销售净利率:对比同类企业,判断毛利率、费用控制是否合理。

总资产周转率:分析存货周转、应收账款回收效率。

权益乘数:评估负债水平是否健康(过高可能引发偿债风险)。

AARRR

AARRR模型对应产品运营的5个重要环节,分别是:

获取用户(Acquisition):用户如何找到我们?
激活用户(Activation):用户的首次体验如何?
提高留存(Retention):用户会回来吗?
增加收入(Revenue):如何赚到更多钱?
推荐(Referral):用户会告诉其他人吗?

每个环节对应不同指标,根据指标来判断环节好坏。

PEST

PEST分析‌是一种用于分析和预测企业外部环境对企业影响的工具,主要包括政治(Political)、经济(Economic)、社会(Social)和技术(Technological)四个方面。通过PEST分析,企业可以更好地理解其外部环境的变化,从而制定相应的战略和决策。

RFM

RFM是三个指标的缩写:

R(Recency):最近一次消费时间间隔
F(Frequency):消费频率
M(Monetary):消费金额
三个指标的具体含义:

最近一次消费时间间隔(R):指的是用户最近一次消费距离现在多长时间了。
消费频率(F):指用户一段时间内消费了多少次。一段时间一般为一个月,根据具体需求而定。
消费金额(M):指用户一段时间内的消费金额。
这3个指标针对的业务不同,定义也不同,要根据业务来灵活定义。

各指标特征如下:

R的值越小,离上一次消费越近,说明用户价值越高。
F的值越高,购买频率越高,说明用户越高。
M的值越大,消费金额越高,说明用户越高。

SWOT

SWOT分析‌是一种基于内外部竞争环境和竞争条件下的态势分析方法,用于评估一个组织或项目的优势(Strengths)、劣势(Weaknesses)、机会(Opportunities)和威胁(Threats)。通过将这四个方面进行系统分析,可以帮助企业或项目制定相应的发展战略、计划以及对策。

5W1H

5W指的是:what(是什么)、when(何时)、where(何地)、why(为什么)、who(谁)

1H指的是:how(怎样做)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值