CVPR 2023 中的半监督学习: FixMatch 的升级版 UniMatch

UniMatch是FixMatch的升级,通过统一图像和特征扰动以及双流扰动,扩展了半监督学习的扰动空间。在Cityscapes、COCO和Pascal VOC等数据集上,UniMatch展示了优越的性能,特别是在小样本设置下。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

  • 前言
  • UniMatch 概述
  • 回顾 FixMatch
  • 统一图像和特征的扰动
  • 双流扰动
  • 实验
  • 总结
  • 参考

前言

我们首先回顾下发表在 NeurIPS 2020 上的 FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence,FixMatch 是一种更轻量的半监督分类方法。如下图所示,FixMatch 首先使用模型(带标签数据训练后的)对弱增强的未标记图像进行预测,生成伪标签。对于给定的图像,只有在模型产生高置信度的预测时,伪标签才会被保留。然后,在输入同一图像的强增强版本时,训练模型预测伪标签。

请添加图片描述

有趣的是,这样一个简单的流程在转移到分割场景中已经取得了与最近的先进工作相近的结果。然而,它的成功在很大程度上依赖于对强数据增强的手动设计。出于这个动机,这篇文章提出了一个辅助特征扰动流作为补充,从而扩大了扰动空间(特征级别)。另一方面,为了充分探索原始图像级别的增强&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值