使用SPSS分析正态分布

简介

本练习用到工作满意度的数据, 使用SPSS 工具,查看数据是否满足正态分布,可用于定量分析。

峰度(Kurtosis 上下偏 )与偏度(Skewness 左右偏)是测量数据正态分布特性的两个指标。

  • 单变量 univariable 检查(一个值对另一个值的影响), Kurtosis & Skewness >=正负1.96
  • 多变量multivariable检查(多个值对一个结果值的影响) 
    • Kurtosis >=正负20
    • Skewness>=正负3
    •  Pvalue>0.05

SPSS步骤:

  • Raw data 导入元数据 

  • Remove Missing/Suspicious data删除空值或者可疑值

          可疑:例如重复,都是同一个结果的值

  • Univarible 单变量检查

       Calculate Kurtosis & Skewness(分析-描述性分析-描述)  

  1. 在SPSS菜单的数据视图中,选择菜单:分析-描述性统计-描述,选择所有变量,和选择保存标准化值作为变量。

        2.  在选项option- 分布distribution中 选择Kurtosis & Skewness

        3. 点继续,确认后开始计算

               4. 由于Kurtosis & Skewness   >=+/- 1.96(Education,Burnout等)不符合正态分布。 

  • Remove outlier 删除异常值

使用SPSS 分析-描述性分析-频率 找出异常值

  1. 菜单选择 decriptive statistics - frequency , 只选择Z开头的变量(上一步添加的标转化值变量),不要选中display frequency table。

                2. 点统计:在dispersion 分散中选中最大,最小值。

        3. 在生成的Frequency 表中, 找最大值超过4的Z列 Zchildren 和Zburnout

        4. 在数据视图dataview, 对Zchildren 按照降序排列 ,找到值大于4的行删除掉

                 同理,ZBurnout 按照降序排列 ,找到值大于4的行删除

       

  • Multivariable 多变量检查

  1.  使用SPSS 回归-线性分析 计算mahalanbis 
  2. 使用webpower(WebPower - Statistical Power Analysis and Sample Size Planning for Univariate and multivariate skewness and kurtosis calculation)计算 kurtosis, skewness, Pvalue

步骤

1. 数据视图,菜单分析 - 回归-线性

2. 选中因变量dependent(DV -depedent variable)和自变量(IV-independent variable)。

因为满意度是本数据的最终结果,作为因变量dependent variable, 而其他所有都是影响满意度的变量作为自变量。

3. 在Save选项中找到mahalanbis ,点继续(上图)

4. 回到data view ,查看MAH_1列按照升序排列,删除空值行

5. 保存spss 数据文件jobsatisfaction, 在https://webpower.psychstat.org/models/kurtosis/  导入数据,填写变量列为1-25 , 即gender-south

6. 生成结果,查看

  1. 单变量:skewness 和kurtosis 值是否 +-1.96
  2. 多变量,  查看 kurtosis  大于正负20, skewness 大于正负3, p值大于0.05
  3. 结论:
    1. 单变量评估:Education,Supervision 不符合大于等于正负1.96 不符合正态分布
    2. 多变量评估:Skewness =157.2671 大于3, Kurtosis=639.9940大于20, P-value 小于0.05, 不符合正态分布。因为,只能做无参数测试non-parameter test。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值