简介
本练习用到工作满意度的数据, 使用SPSS 工具,查看数据是否满足正态分布,可用于定量分析。
峰度(Kurtosis 上下偏 )与偏度(Skewness 左右偏)是测量数据正态分布特性的两个指标。
- 单变量 univariable 检查(一个值对另一个值的影响), Kurtosis & Skewness >=正负1.96
- 多变量multivariable检查(多个值对一个结果值的影响)
- Kurtosis >=正负20
- Skewness>=正负3
- Pvalue>0.05
SPSS步骤:
-
Raw data 导入元数据
-
Remove Missing/Suspicious data删除空值或者可疑值
可疑:例如重复,都是同一个结果的值
-
Univarible 单变量检查
Calculate Kurtosis & Skewness(分析-描述性分析-描述)
- 在SPSS菜单的数据视图中,选择菜单:分析-描述性统计-描述,选择所有变量,和选择保存标准化值作为变量。
2. 在选项option- 分布distribution中 选择Kurtosis & Skewness
3. 点继续,确认后开始计算
4. 由于Kurtosis & Skewness >=+/- 1.96(Education,Burnout等)不符合正态分布。
-
Remove outlier 删除异常值
使用SPSS 分析-描述性分析-频率 找出异常值
- 菜单选择 decriptive statistics - frequency , 只选择Z开头的变量(上一步添加的标转化值变量),不要选中display frequency table。
2. 点统计:在dispersion 分散中选中最大,最小值。
3. 在生成的Frequency 表中, 找最大值超过4的Z列 Zchildren 和Zburnout
4. 在数据视图dataview, 对Zchildren 按照降序排列 ,找到值大于4的行删除掉
同理,ZBurnout 按照降序排列 ,找到值大于4的行删除
-
Multivariable 多变量检查
- 使用SPSS 回归-线性分析 计算mahalanbis
- 使用webpower(WebPower - Statistical Power Analysis and Sample Size Planning for Univariate and multivariate skewness and kurtosis calculation)计算 kurtosis, skewness, Pvalue
步骤
1. 数据视图,菜单分析 - 回归-线性
2. 选中因变量dependent(DV -depedent variable)和自变量(IV-independent variable)。
因为满意度是本数据的最终结果,作为因变量dependent variable, 而其他所有都是影响满意度的变量作为自变量。
3. 在Save选项中找到mahalanbis ,点继续(上图)
4. 回到data view ,查看MAH_1列按照升序排列,删除空值行
5. 保存spss 数据文件jobsatisfaction, 在https://webpower.psychstat.org/models/kurtosis/ 导入数据,填写变量列为1-25 , 即gender-south
6. 生成结果,查看
- 单变量:skewness 和kurtosis 值是否 +-1.96
- 多变量, 查看 kurtosis 大于正负20, skewness 大于正负3, p值大于0.05
- 结论:
- 单变量评估:Education,Supervision 不符合大于等于正负1.96 不符合正态分布
- 多变量评估:Skewness =157.2671 大于3, Kurtosis=639.9940大于20, P-value 小于0.05, 不符合正态分布。因为,只能做无参数测试non-parameter test。