题目:数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。
你可以假设数组是非空的,并且给定的数组总是存在多数元素。
示例 1: 输入: [1, 2, 3, 2, 2, 2, 5, 4, 2] 输出: 2
限制:1 <= 数组长度 <= 50000
解题思路:
题意为找出数组中的众数(超过一半),本题常见的三种解法为:
- 哈希表统计法: 遍历数组
nums
,用 HashMap 统计各数字的数量,即可找出 众数 。 - 数组排序法:将数组
nums
排序,数组中点的元素 一定为众数。 - 摩尔投票法:核心理念为票数正负抵消 。
数组排序法:
代码:
class Solution:
def majorityElement(self, nums: List[int]) -> int:
nums.sort()
return nums[len(nums)//2]
摩尔投票法:
记首个元素为n1,众数为x,遍历并统计票数。利用票数和=0可缩小剩余数组区间。当遍历完成时,最后一轮假设的数字为众数。
里面包含的推论有:
- 若记众数的票数为+1,非众数的票数为-1,则一定所有数字的票数和>0;
- 若数组的前a个数字的票数和=0,则数组剩余(n-a)个数字的票数和一定仍>0,即后(n-a)个数字的众数仍为x。
代码:
class Solution:
def majorityElement(self, nums: List[int]) -> int:
votes = 0
for num in nums:
if votes == 0: x = num
votes += 1 if num == x else -1
return x
复杂度:
- 时间复杂度:O(N)
- 空间复杂度:O(1)