题目:
输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)。B是A的子结构, 即 A中有出现和B相同的结构和节点值。
例如:给定的树 A:
3
/ \
4 5
/ \
1 2
给定的树 B:
4
/
1
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。
示例 1:输入:A = [1,2,3], B = [3,1] 输出:false
示例 2:输入:A = [3,4,5,1,2], B = [4,1] 输出:true
限制:0 <= 节点个数 <= 10000
解题思路:
如果树B是树A的子结构,则子结构的根节点可能为树A的任意一个节点。因此判断树B是否是树A的子结构,则需完成以下两步:
- 先序遍历树A中的每个节点i----isSubStructure(A,B)
- 判断树A中以i为根节点的子树是否包含树B----recur(A,B)
代码:
class Solution:
def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
def recur(A, B):
if not B: return True #说明树B已匹配完成(越过叶子节点)
if not A or A.val != B.val: return False #说明已经越过树A叶子节点,则匹配失败
return recur(A.left, B.left) and recur(A.right, B.right) #判断A和B的左右子节点是否相等
return bool(A and B) and (recur(A, B) or self.isSubStructure(A.left, B) or self.isSubStructure(A.right, B))
#当树A为空或者树B为空时,直接返回false;以节点A为根节点的子树包含B;树B是树A 的左子树的子结构或树B是树A右子树的子结构
复杂度:
- 时间复杂度:O(MN),其中M,N分别为树A和树B的节点数量。先序遍历树A占用O(M),每次调用recur(A,B)判断占用O(N)
- 空间复杂度:O(M),当树A和树B都退化为链表时,递归深度最大。当M<=N时,遍历树A与递归判断的总递归深度为M;当M>N时,最差情况为遍历树A叶子节点,此时总递归深度为M。