剑指offer26.树的子结构(先序遍历)

题目

输入两棵二叉树A和B,判断B是不是A的子结构。(约定空树不是任意一个树的子结构)。B是A的子结构, 即 A中有出现和B相同的结构和节点值。

例如:给定的树 A:

     3
    / \
   4   5
  / \
 1   2
给定的树 B:

   4 
  /
 1
返回 true,因为 B 与 A 的一个子树拥有相同的结构和节点值。

示例 1:输入:A = [1,2,3], B = [3,1]     输出:false
示例 2:输入:A = [3,4,5,1,2], B = [4,1]     输出:true
限制:0 <= 节点个数 <= 10000

解题思路

如果树B是树A的子结构,则子结构的根节点可能为树A的任意一个节点。因此判断树B是否是树A的子结构,则需完成以下两步:

  • 先序遍历树A中的每个节点i----isSubStructure(A,B)
  • 判断树A中以i为根节点的子树是否包含树B----recur(A,B)

代码

class Solution:
    def isSubStructure(self, A: TreeNode, B: TreeNode) -> bool:
        def recur(A, B):
            if not B: return True  #说明树B已匹配完成(越过叶子节点)
            if not A or A.val != B.val: return False   #说明已经越过树A叶子节点,则匹配失败
            return recur(A.left, B.left) and recur(A.right, B.right)  #判断A和B的左右子节点是否相等

        return bool(A and B) and (recur(A, B) or self.isSubStructure(A.left, B) or self.isSubStructure(A.right, B))   
        #当树A为空或者树B为空时,直接返回false;以节点A为根节点的子树包含B;树B是树A 的左子树的子结构或树B是树A右子树的子结构

复杂度

  • 时间复杂度:O(MN),其中M,N分别为树A和树B的节点数量。先序遍历树A占用O(M),每次调用recur(A,B)判断占用O(N)
  • 空间复杂度:O(M),当树A和树B都退化为链表时,递归深度最大。当M<=N时,遍历树A与递归判断的总递归深度为M;当M>N时,最差情况为遍历树A叶子节点,此时总递归深度为M。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值