tensorflow训练时对session的设置

当我们需要启用GPU对模型进行训练的时候,常常需要使用到一下代码对session进行设置。

with tf.Graph().as_default():
    gpu_options=tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
    sess=tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,log_device_placement=False))
    with sess.as_default():   

tf.graph

tensorflow的运算被表示为一个数据流图,其中包含运算结点(操作)和数据结点(数据对象)。在我们开始任务时,tensorflow会提供一个默认的graph,如果我们没有显式的定义一个graph,那么我们接下来的操作就会基于这个graph完成,一般会使用到as_default()函数和with关键字在代码块内完成对graph的操作。

tf.session

TensorFlow 使用 tf.Session 类来表示客户端程序(通常为 Python 程序,但也提供了其他语言的类似接口)与 C++ 运行时之间的连接。tf.Session 对象使我们能够访问本地机器中的设备和使用分布式 TensorFlow 运行时的远程设备。它还可缓存关于 tf.Graph 的信息,使我们能够多次高效地运行同一计算。
session可以通过函数进行参数设置,同时可以根据graph中的操作结点对数据结点进行运算。
使用as_default()函数和with关键字在代码块内完成对session的操作。
使用close()关闭session,有关该session的资源都会被释放。

tf.ConfigProto

此函数用于对session的参数设置,如文章开头的代码段所示。
tf.GPUOptions:
在构造tf.Session()时可通过tf.GPUOptions作为可选配置参数的一部分来显示地指定需要分配的显存比例。
per_process_gpu_memory_fraction指定了每个GPU进程中使用显存的上限,但它只能均匀地作用于所有GPU,无法对不同GPU设置不同的上限。
tf.ConfigProto参数如下:
log_device_placement=True : 是否打印设备分配日志
allow_soft_placement=True : 如果你指定的设备不存在,允许TF自动分配设备
tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
DeepWalk是一种基于随机游走的图嵌入方法,可以将图中的节点映射到低维向量空间中,以便进行下游任务,如节点分类和社区发现。TensorFlow是一个流行的深度学习框架,可以用于训练DeepWalk模型。 下面是使用TensorFlow训练DeepWalk模型的简要步骤: 1. 准备数据集:将图数据集转换为网络邻接矩阵的形式,并将其传递给DeepWalk算法。 2. 定义模型:DeepWalk模型由两个部分组成:随机游走和嵌入学习。随机游走生成节点序列,嵌入学习将节点序列映射到低维空间。可以使用TensorFlow定义这两个部分的模型。 3. 训练模型:使用TensorFlow的优化器和损失函数来训练DeepWalk模型。优化器的作用是最小化损失函数,以便将节点嵌入到低维空间中。 4. 评估模型:使用评估指标来评估DeepWalk模型的性能,例如节点分类和社区发现。 下面是一个使用TensorFlow训练DeepWalk模型的示例代码: ```python import tensorflow as tf import numpy as np # 定义模型超参数 num_nodes = 100 embedding_size = 50 num_walks = 10 walk_length = 80 window_size = 10 num_neg_samples = 5 learning_rate = 0.001 # 定义输入数据 adj_matrix = np.random.rand(num_nodes, num_nodes) input_data = tf.placeholder(tf.float32, shape=[num_nodes, num_nodes]) # 定义随机游走模型 walks = [] for i in range(num_walks): for j in range(num_nodes): curr_node = j walk = [curr_node] for k in range(walk_length - 1): neighbors = np.where(adj_matrix[curr_node,:] > 0)[0] if len(neighbors) == 0: break curr_node = np.random.choice(neighbors) walk.append(curr_node) walks.append(walk) walks = np.array(walks, dtype=np.int32) # 定义嵌入学习模型 embeddings = tf.Variable(tf.random_uniform([num_nodes, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, walks) embed = tf.reshape(embed, [-1, embedding_size]) # 定义损失函数和优化器 targets = tf.placeholder(tf.int32, shape=[None, num_neg_samples + 1]) weights = tf.Variable(tf.truncated_normal([num_nodes, embedding_size], stddev=1.0 / np.sqrt(embedding_size))) biases = tf.Variable(tf.zeros([num_nodes])) loss = tf.reduce_mean(tf.nn.nce_loss(weights, biases, inputs=embed, labels=targets, num_sampled=num_neg_samples, num_classes=num_nodes)) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(loss) # 训练模型 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(1000): _, curr_loss = sess.run([optimizer, loss], feed_dict={input_data: adj_matrix, targets: np.random.randint(num_nodes, size=[walks.shape[0], num_neg_samples + 1])}) print("Iteration: {}, Loss: {}".format(i, curr_loss)) # 评估模型 embeddings = sess.run(embeddings) # ... ``` 在此示例中,我们首先定义了DeepWalk模型的超参数,包括节点数量,嵌入维度,随机游走参数和优化器参数。接下来,我们使用numpy生成随机邻接矩阵,并定义输入数据。然后,我们定义随机游走模型,生成节点序列。最后,我们定义嵌入学习模型,并使用TensorFlow的优化器和损失函数来训练模型。最终,我们可以使用评估指标来评估模型的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值