大数据之 Hive 理论概念知识

——Hive 基本概念

什么是Hive

  • Hive:由 Facebook 开源用于解决海量结构化日志的数据统计(目前交由 Apache 基金会)
  • Hive 是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能
  • 本质:将 HQL 转换为成 MapReduce 程序
    • Hive 处理的数据存储在 HDFS
    • Hive 分析数据底层的默认实现 是 MapReduce
    • 执行程序运行在 Yarn 上
      在这里插入图片描述

优缺点

优点

  • 操作接口采用类 SQL 语法,提供快速开发的能力(简单、容易上手)
  • 避免了去写 MapReduce,减少开发人员的学习成本
  • Hive 的执行延迟比较高,因此 Hive 常用于数据分析,对实时性要求不高的场合
  • Hive 优势在于处理大数据,对于处理小数据没有优势,因为 Hive 的执行延迟比较高
  • Hive 支持用户自定义函数,用户可以根据自己的需求来实现自己的函数

缺点

  • HIve 的 HQL 表达能力有限
    • 迭代式算法无法表达
    • 数据挖掘方面不擅长
  • Hive 的效率比较低
    • Hive 自动生成的 MapReduce 作业,通常情况下不够智能化
    • Hive 调优比较困难,粒度较粗

Hive 架构原理

在这里插入图片描述

  • 用户接口(Client):CLI(hive shell)、JDBC / ODBC(java 访问 hive)、WEBUI(浏览器访问 hive)
  • 元数据(Metastore):元数据包括表名、表所属的数据库(默认是default)、表的拥有者、列 / 分区字段、表的类型(是否是外部表)、表的数据所在目录等;默认存储在自带的 derby 数据库中,推荐使用 MySQL 存储 Metastore
  • Hadoop:使用 HDFS 进行存储,使用 MapReduce 进行计算
  • 驱动器(Driver)
    • 解析器(SQL Parser) :将 SQL 字符串转换成抽象语法树 AST,这一步一般都用第三方工具库完成,比如 antlr;对 AST 进行语法分析,比如表是否存在、字段是否存在、SQL 语义是否有误
    • 编译器(Physical Plan):将 AST 编译生成逻辑执行计划
    • 优化器(Query Optimizer):对逻辑执行计划进行优化
    • 执行器(Execution):把逻辑执行计划转换成可以运行的物理计划。对于 Hive 来说,就是 MR / Spark

运行机制

在这里插入图片描述Hive 通过给用户提供的一系列交互接口,接收到用户的指令(SQL),使用自己的 Driver,结合元数据(MetaStore),将这些指令翻译成 MapReduce,提交到 Hadoop 中执行,最后,将执行返回的结果输出到用户交互接口。

Hive 和数据库比较

  • 查询语言:由于 SQL 被广泛的应用在数据仓库中,因此,专门针对 Hive 的特性设计了类 SQL 的查询语言 HQL
  • 数据存储位置:Hive 是建立在 Hadoop 之上的,所有 Hive 的数据都是存储在 HDFS 中的。而数据库则可以将数据保存在块设备或者本地文件系统中
  • 数据更新:由于 Hive 是针对数据仓库应用设计的,而数据仓库的内容是读多写少的。因此,**Hive 中不建议对数据的改写,所有的数据都是在加载的时候确定好的。**而数据库中的数据通常是需要经常进行修改的,因此可以使用 Insert into 添加数据,使用Update set 修改数据
  • 索引:Hive 在加载数据的过程中不会对数据进行任何处理,甚至不会对数据进行扫描,因此也没有对数据中的某些 Key 建立索引。Hive 要访问数据中满足条件的特定值时,需要暴力扫描整个数据,因此访问延迟较高。由于 MapReduce 的引入,Hive 可以并行访问数据,因此即使没有索引,对于大数据量的访问,Hive 仍然可以体现出优势。数据库中,通常会针对一个或者几个列建立索引,因此对于少量的特定条件的数据的访问,数据库可以有很高效率,较低的延迟。由于数据的访问延迟较高,决定了 Hive 不适合在线数据查询
  • 执行:Hive 中大多数查询的执行是通过 Hadoop 提供的 MapReduce 来实现的。而数据库是通常有自己的执行引擎
  • 执行延迟:Hive 在查询数据的时候,由于没有索引,需要扫描整个表,因此延迟较高。另外一个导致 Hive 执行延迟高的因素是 MapReduce 框架。由于 MapReduce 本身具有较高的延迟,因此在利用 MapReduce 执行 Hive 查询时,也会有较高的延迟。相对的,数据库的执行延迟较低。当然,这个低是有条件的,即数据规模较小,当数据规模大到超过数据库的处理能力的时候,Hive 的并行计算显然能体现出优势
  • 可扩展性:由于 Hive 是建立在 Hadoop 之上的,因此 Hive 的可扩展性是和 Hadoop 的可扩展性是一直的(世界上最大的 Hadoop 集群在 Yahoo!2009年的规模在4000台节点左右)。而数据库由于ACID语义的严格限制,扩展行非常有限。目前最先进的并行数据库 Oracle 在理论上的扩展能力也只有 100 台左右
  • 数据规模:由于 Hive 建立在集群上并可以利用 MapReduce 进行并行计算,因此可以支持很大规模的数据;对应的,数据库可以支持的数据规模较小

—— Hive 表

  • 管理表:默认创建的表都是所谓的管理表, 有时也被称为内部表。因为这种表,Hive 会(或多或少)控制着数据的声明周期。Hive 默认情况下会将这些表的数据存储在由配置项所定义的目录的子目录下。当我们删除一个管理表时,Hive 也会删除这个表中数据。管理表不适合和其他工具共享数据
  • 外部表:因为表是外部表,所以 Hive 并非认为其完全拥有这份数据。删除该表并不会删除这份数据,不过描述表的元数据信息会被删除掉
  • 管理表和外部表的使用场景:每天将收集到的网站日志定期流入 HDFS 文本文件。在外部表(原始日志表)的基础上做大量的统计分析,用到的中间表、结果表使用内部表存储,数据通过 SELECT+INSERT 进入内部表
  • 分区表:实际上就是对应一个 HDFS 文件系统上的独立的文件夹,该文件夹下是该分区所有的数据文件。Hive中的分区就是分目录,把一个大的数据集根据业务需要分隔成小的数据集。在查询时通过 WHERE 子句中的表达式查询所需要的指定的分区,这样的查询效率会提高很多

—— Hive 优化

Fetch 抓取

  • Fetch 抓取是指,Hive 中对某些情况的查询可以不必使用 MapReduce 计算。例如:
    SELECT * FROM employees;在这种情况下,Hive 可以简单地读取 employee 对应的存储目录
    下的文件,然后输出查询结果到控制台。
  • 在 hive-default.xml.template 文件中 hive.fetch.task.conversion 默认是 more,老版本 hive
    默认是 minimal,该属性修改为 more 以后,在全局查找、字段查找、limit 查找等都不走
    MapReduce

本地模式

  • 大多数的 Hadoop Job 是需要 Hadoop 提供的完整的可扩展性来处理大数据集的。不过,
    有时 Hive 的输入数据量是非常小的。在这种情况下,为查询触发执行任务消耗的时间可能
    会比实际 job 的执行时间要多的多。对于大多数这种情况,Hive 可以通过本地模式在单台机
    器上处理所有的任务。对于小数据集,执行时间可以明显被缩短
  • 用户可以通过设置 hive.exec.mode.local.auto 的值为 true,来让 Hive 在适当的时候自动
    启动这个优化

表优化

小表、大表Join

  • 将 key 相对分散,并且数据量小的表放在 join 的左边,这样可以有效减少内存溢出错误
    发生的几率;再进一步,可以使用 map join 让小的维度表(1000 条以下的记录条数)先进
    内存。在 map 端完成 reduce
  • 实际测试发现:新版的 hive 已经对小表 JOIN 大表和大表 JOIN 小表进行了优化。小表
    放在左边和右边已经没有明显区别

大表、大表Join

  • 空 KEY 过滤:有时 join 超时是因为某些 key 对应的数据太多,而相同 key 对应的数据都会发送到相同的 reducer 上,从而导致内存不够。此时我们应该仔细分析这些异常的 key,很多情况下,这些 key 对应的数据是异常数据,我们需要在 SQL 语句中进行过滤
  • 空 KEY 转换:有时虽然某个 key 为空对应的数据很多,但是相应的数据不是异常数据,必须要包含在join 的结果中,此时我们可以表 a 中 key 为空的字段赋一个随机的值,使得数据随机均匀地
    分不到不同的 reducer 上

MapJoin:如果不指定 MapJoin 或者不符合 MapJoin 的条件,那么 Hive 解析器会将 Join 操作转换成 Common Join,即:在 Reduce 阶段完成 join。容易发生数据倾斜。可以用 MapJoin 把小表全部加载到内存在 map 端进行 join,避免 reducer 处理

Group By:默认情况下,Map 阶段同一 Key 数据分发给一个 reduce,当一个 key 数据过大时就倾斜了。并不是所有的聚合操作都需要在 Reduce 端完成,很多聚合操作都可以先在 Map 端进行部分聚合,最后在 Reduce 端得出最终结果

Count (Distinct) 去重统计:数据量小的时候无所谓,数据量大的情况下,由于 COUNT DISTINCT 操作需要用一个Reduce Task 来完成,这一个 Reduce 需要处理的数据量太大,就会导致整个 Job 很难完成,一般 COUNT DISTINCT 使用先 GROUP BY 再 COUNT 的方式替换

笛卡尔积尽量避免笛卡尔积,join 的时候不加 on 条件,或者无效的 on 条件,Hive 只能使用 1 个 reducer 来完成笛卡尔积

行列过滤

  • 列处理:在 SELECT 中,只拿需要的列,如果有,尽量使用分区过滤,少用 SELECT *
  • 行处理:在分区剪裁中,当使用外关联时,如果将副表的过滤条件写在 Where 后面,那么就会先全表关联,之后再过滤

动态分区调整:关系型数据库中,对分区表 Insert 数据时候,数据库自动会根据分区字段的值,将数据插入到相应的分区中,Hive 中也提供了类似的机制,即动态分区(Dynamic Partition),只不
过,使用 Hive 的动态分区,需要进行相应的配置

MR优化

合理设置 Map 数:通常情况下,作业会通过 input 的目录产生一个或者多个 map 任务;

  • 是不是 map 数越多越好?如果一个任务有很多小文件(远远小于块大小 128m),则每个小文件也会被当做一个块,用一个 map 任务来完成,而一个 map 任务启动和初始化的时间远远大
    于逻辑处理的时间,就会造成很大的资源浪费。而且,同时可执行的 map 数是受限的

小文件进行合并:在 map 执行前合并小文件,减少 map 数:CombineHiveInputFormat 具有对小文件进行合并的功能(系统默认的格式)。HiveInputFormat 没有对小文件合并功能

复杂文件增加 Map 数:当 input 的文件都很大,任务逻辑复杂,map 执行非常慢的时候,可以考虑增加 Map数,来使得每个 map 处理的数据量减少,从而提高任务的执行效率

  • 增加 map 的方法为
    根据computeSliteSize(Math.max(minSize,Math.min(maxSize,blocksize)))=blocksize=128M 公式,调整 maxSize 最大值。让 maxSize 最大值低于 blocksize 就可以增加 map 的个数

合理设置 Reduce 数:在设置 reduce 个数的时候也需要考虑这两个原则:处理大数据量利用合适的 reduce 数;使单个 reduce 任务处理数据量大小要合适

并行执行

Hive 会将一个查询转化成一个或者多个阶段。这样的阶段可以是 MapReduce 阶段、抽
样阶段、合并阶段、limit 阶段。或者 Hive 执行过程中可能需要的其他阶段。默认情况下,
Hive 一次只会执行一个阶段。不过,某个特定的 job 可能包含众多的阶段,而这些阶段可能
并非完全互相依赖的,也就是说有些阶段是可以并行执行的,这样可能使得整个 job 的执行
时间缩短。不过,如果有更多的阶段可以并行执行,那么 job 可能就越快完成

严格模式

Hive 提供了一个严格模式,可以防止用户执行那些可能意想不到的不好的影响的查询。
通过设置属性 hive.mapred.mode 值为默认是非严格模式 nonstrict 。开启严格模式需要
修改 hive.mapred.mode 值为 strict,开启严格模式可以禁止 3 种类型的查询

JVM 重用

  • JVM 重用是 Hadoop 调优参数的内容,其对 Hive 的性能具有非常大的影响,特别是对
    于很难避免小文件的场景或 task 特别多的场景,这类场景大多数执行时间都很短
  • Hadoop 的默认配置通常是使用派生 JVM 来执行 map 和 Reduce 任务的。这时 JVM 的启动过程可能会造成相当大的开销,尤其是执行的 job 包含有成百上千 task任务的情况。JVM重用可以使得 JVM 实例在同一个 job 中重新使用 N 次。N 的值可以在 Hadoop 的mapred-site.xml 文件中进行配置。通常在 10-20 之间,具体多少需要根据具体业务场景测试得出

推测执行

  • 在分布式集群环境下,因为程序 Bug(包括 Hadoop 本身的 bug),负载不均衡或者资
    源分布不均等原因,会造成同一个作业的多个任务之间运行速度不一致,有些任务的运行速
    度可能明显慢于其他任务(比如一个作业的某个任务进度只有 50%,而其他所有任务已经
    运行完毕),则这些任务会拖慢作业的整体执行进度。为了避免这种情况发生,Hadoop 采 用了推测执行(Speculative Execution)机制,它根据一定的法则推测出“拖后腿”的任务,并
    为这样的任务启动一个备份任务,让该任务与原始任务同时处理同一份数据,并最终选用最
    先成功运行完成任务的计算结果作为最终结果
  • 关于调优这些推测执行变量,还很难给一个具体的建议。如果用户对于运行时的偏差非
    常敏感的话,那么可以将这些功能关闭掉。如果用户因为输入数据量很大而需要执行长时间
    的 map 或者 Reduce task 的话,那么启动推测执行造成的浪费是非常巨大大

压缩

执行计划(Explain)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序少年不秃头

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值