前言
工作中遇到了有些任务需要定时执行的需求,Python中定时任务的解决方案,总体来说有四种,分别是: crontab、 scheduler、 Celery、 APScheduler,其中 crontab不适合多台服务器的配置、 scheduler太过于简单、 Celery依赖的软件比较多,比较耗资源。最好的解决方案就是 APScheduler。
APScheduler使用起来十分方便。提供了基于日期、固定时间间隔以及 crontab类型的任务。还可以在程序运行过程中动态的新增任务和删除任务。在任务运行过程中,还可以把任务存储起来,下次启动运行依然保留之前的状态。另外最重要的一个特点是,因为他是基于 Python语言的库,所以是可以跨平台的,一段代码,处处运行!
四个基本对象
-
触发器(triggers):
触发器就是根据你指定的触发方式,比如是按照时间间隔,还是按照 crontab触发,触发条件是什么等。每个任务都有自己的触发器。 -
任务存储器(job stores):
任务存储器是可以存储任务的地方,默认情况下任务保存在内存,也可将任务保存在各种数据库中。任务存储进去后,会进行序列化,然后也可以反序列化提取出来,继续执行。 -
执行器(executors):
执行器的目的是安排任务到线程池或者进程池中运行的。 -
调度器(schedulers):
任务调度器是属于整个调度的总指挥官。他会合理安排作业存储器、执行器、触发器进行工作,并进行添加和删除任务等。调度器通常是只有一个的。开发人员很少直接操作触发器、存储器、执行器等。因为这些都由调度器自动来实现了。
触发器
触发器有两种,第一种是 interval,第二种是 crontab。 interval可以具体指定多少时间间隔执行一次。 crontab可以指定执行的日期策略。
- date触发器:
在某个日期时间只触发一次事件。示例代码如下:
from datetime import date
from apscheduler . schedulers . blocking import BlockingScheduler
sched = BlockingScheduler
def my_job ( text ):
print ( text )
sched.add_job ( my_job , 'date' , run_date = date ( 2020 , 5 , 22 ), args =[ 'text' ])
sched.start
- interval触发器:
想要在固定的时间间隔触发事件。 interval的触发器可以设置以下的触发参数:
- weeks :周。整型。
- days :一个月中的第几天。整型。
- hours :小时。整型。
- minutes :分钟。整型。
- seconds :秒。整型。
- start_date :间隔触发的起始时间。
- end_date :间隔触发的结束时间。
- jitter :触发的时间误差。
def cron_task :
scheduler = BlockingScheduler
scheduler.add_job ( tick , "cron" , hour = 11 , minute = 24 )
scheduler.start
- crontab触发器:
在某个确切的时间周期性的触发事件。可以使用的参数如下:
- year :4位数字的年份。
- month :1-12月份。
- day :1-31日。
- week :1-53周。
- day_of_week :一个礼拜中的第几天( 0 - 6 或者 mon 、 tue 、 wed 、 thu 、 fri 、 sat 、 sun )。
- hour : 0 - 23 小时。
- minute : 0 - 59 分钟。
- second : 0 - 59 秒。
- start_date : datetime 类型或者字符串类型,起始时间。
- end_date : datetime 类型或者字符串类型,结束时间。
- timezone :时区。
- jitter :任务触发的误差时间。
也可以用表达式类型,可以用以下方式:
表达式 | 字段 | 描述 |
---|---|---|
* | 任何 | 在每个值都触发 |
*/a | 任何 | 每隔 a触发一次 |
a-b | 任何 | 在 a-b区间内任何一个时间触发( a必须小于 b) |
a-b/c | 任何 | 在 a-b区间内每隔 c触发一次 |
xth y | day | 第 x个星期 y触发 |
lastx | day | 最后一个星期 x触发 |
last | day | 一个月中的最后一天触发 |
x,y,z | 任何 | 可以把上面的表达式进行组合 |
示例:
def cron_task :
scheduler = BlockingScheduler
scheduler.add_job ( tick , "cron" , day = "4th sun" , hour = 20 , minute = 1 )
scheduler.start
调度器
- BlockingScheduler :适用于调度程序是进程中唯一运行的进程,调用 start 函数会阻塞当前线程,不能立即返回。
- BackgroundScheduler :适用于调度程序在应用程序的后台运行,调用 start 后主线程不会阻塞。
- AsyncIOScheduler :适用于使用了 asyncio 模块的应用程序。
- GeventScheduler :适用于使用 gevent 模块的应用程序。
- TwistedScheduler :适用于构建 Twisted 的应用程序。
- QtScheduler :适用于构建 Qt 的应用程序
任务存储器
任务存储器的选择有两种。一是内存,也是默认的配置。二是数据库。使用内存的方式是简单高效,但是不好的是,一旦程序出现问题,重新运行的话,会把之前已经执行了的任务重新执行一遍。数据库则可以在程序崩溃后,重新运行可以从之前中断的地方恢复正常运行。有以下几种选择:
- MemoryJobStore :没有序列化,任务存储在内存中,增删改查都是在内存中完成。
- SQLAlchemyJobStore :使用 SQLAlchemy 这个 ORM 框架作为存储方式。
- MongoDBJobStore :使用 mongodb 作为存储器。
- RedisJobStore :使用 redis 作为存储器。
执行器
执行器的选择取决于应用场景。通常默认的 ThreadPoolExecutor已经在大部分情况下是可以满足我们需求的。如果我们的任务涉及到一些 CPU密集计算的操作。那么应该考虑 ProcessPoolExecutor。然后针对每种程序, apscheduler也设置了不同的 executor:
- ThreadPoolExecutor :线程池执行器。
- ProcessPoolExecutor :进程池执行器。
- GeventExecutor : Gevent 程序执行器。
- TornadoExecutor : Tornado 程序执行器。
- TwistedExecutor : Twisted 程序执行器。
- AsyncIOExecutor : asyncio 程序执行器。
定时任务调度配置
这里我们用一个例子来说明。比如我想这样配置
-
执行器:
配置 default 执行器为 ThreadPoolExecutor ,并且设置最多的线程数是20个。 -
存储器:
配置 default 的任务存储器为 SQLAlchemyJobStore (使用 SQLite ) 。 -
任务配置:
设置 coalesce 为 False :设置这个目的是,比如由于某个原因导致某个任务积攒了很多次没有执行(比如有一个任务是1分钟跑一次,但是系统原因断了5分钟),如果 coalesce = True ,那么下次恢复运行的时候,会只执行一次,而如果设置 coalesce = False ,那么就不会合并,会5次全部执行。
max_instances = 5 :同一个任务同一时间最多只能有5个实例在运行。比如一个耗时10分钟的job,被指定每分钟运行1次,如果我 max_instance 值5,那么在第 6 ~ 10 分钟上,新的运行实例不会被执行,因为已经有5个实例在跑了。
那么代码如下:
from apscheduler . schedulers . blocking import BlockingScheduler
from datetime import datetime
from apscheduler . jobstores . sqlalchemy import SQLAlchemyJobStore
from apscheduler . executors . pool import ThreadPoolExecutor
def interval_task :
jobstores = {
'default' : SQLAlchemyJobStore ( url = 'sqlite:///jobs.sqlite' )
} # 会自动在当前目录创建该sqlite文件
executors = {
'default' : ThreadPoolExecutor ( 20 )
} # 派生线程的最大数目
job_defaults = {
'coalesce' : False ,
'max_instances' : 3
}
scheduler = BlockingScheduler ( jobstores = jobstores , executors = executors , job_defaults = job_defaults )
scheduler.add_job ( tick , "interval" , minutes = 1 )
scheduler.start
任务操作
-
添加任务:
使用 scheduler.add_job(job_obj,args,id,trigger,**trigger_kwargs)。 -
删除任务:
使用 scheduler.remove_job(job_id,jobstore=None)。 -
暂停任务:
使用 scheduler.pause_job(job_id,jobstore=None)。 -
恢复任务:
使用 scheduler.resume_job(job_id,jobstore=None)。 -
修改某个任务属性信息:
使用 scheduler.modify_job(job_id,jobstore=None,**changes)。 -
修改单个作业的触发器并更新下次运行时间:
使用 scheduler.reschedule_job(job_id,jobstore=None,trigger=None,**trigger_args) -
输出作业信息:
使用 scheduler.print_jobs(jobstore=None,out=sys.stdout)
异常监听
当我们的任务抛出异常后,我们可以监听到,然后把错误信息进行记录。示例代码如下:
from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR
import datetime
import logging
# 配置日志显示
logging.basicConfig ( level = logging . INFO ,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s' ,
datefmt = '%Y-%m-%d %H:%M:%S' ,
filename = 'log1.txt' ,
filemode = 'a' )
def aps_test ( x ):
print ( datetime . datetime . now . strftime ( '%Y-%m-%d %H:%M:%S' ), x )
def date_test ( x ):
print ( datetime . datetime . now . strftime ( '%Y-%m-%d %H:%M:%S' ), x )
# 故意抛出异常
print ( 1 / 0 )
def my_listener ( event ):
if event.exception :
print ( '任务出错了!!!!!!' )
else :
print ( '任务照常运行...' )
scheduler = BlockingScheduler
scheduler.add_job ( func = date_test , args =( '一次性任务,会出错' ,), next_run_time = datetime.datetime . now + datetime . timedelta ( seconds = 15 ), id = 'date_task' )
scheduler.add_job ( func = aps_test , args =( '循环任务' ,), trigger = 'interval' , seconds = 3 , id = 'interval_task' )
# 配置任务执行完成和执行错误的监听
scheduler.add_listener ( my_listener , EVENT_JOB_EXECUTED | EVENT_JOB_ERROR )
# 设置日志
scheduler._logger = logging
schedule.start