自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(22)
  • 收藏
  • 关注

原创 [pytorch]model.children(), model.modules()和parameters()的区别和用法

[pytorch]children,modules和parameters的区别和用法childrenmoduleparameterschildrenchildren只获取最浅层的网络结构,相应的named_children则返回tuple的数据,tuple[0]是该层的名称,tuple[1]是相应的结构:class Net4(torch.nn.Module): def __init__(self): super(Net4, self).__init__() se

2020-12-04 09:59:48 60

原创 [python]图像处理模块skimage/open-cv/PIL.Image的常用操作

[python]图像处理模块skimage/open-cv/PIL.Image的常用操作Introduction图像读取图像存储图像resizeIntroduction做cv的小伙伴在看github上的代码的时候会频繁地碰到题目中地三个模块,因为它们都具有强大的图像处理功能,话不多说直接干货。图像读取PILfrom PIL import Imageimg = Image.open('01.jpg')# 转为灰度imgGrey = img.convert('L')# 特别注意PIL.Im

2020-07-29 15:28:34 88

原创 LSTM理解与pytorch使用

LSTM理解与pytorch使用引言LSTM结构总体结构详细结构Pytorch用法参数介绍使用实例获取中间各层的隐藏层信息关于变长输入引言LSTM应该说是每一个做机器学习的人都绕不开的东西,它的结构看起来复杂,但是充分体现着人脑在记忆过程中的特征,下面本文将介绍一下LSTM的结构以及pytorch的用法。LSTM结构总体结构首先,LSTM主要用来处理带有时序信息的数据,包括视频、句子,它将人脑的对于不同time step的记忆过程理解为一连串的cell分别对不同的时刻输入信息的处理。详细结构

2020-07-01 10:29:43 276

原创 图像的稀疏表示BoW、SPM、ScSPM和LLC介绍

图像的稀疏表示BoW、SPM、ScSPM和LLC介绍引言稀疏表示BoWSPMScSPMLLC参考文献引言首先介绍一下写这篇博客的背景,最近在看视频无监督的paper,无监督最早采用特征提取+聚类的模型,其中一篇提到了利用LLC进行快速聚类,所以了解了一下图像的稀疏表示。图像的稀疏表示方法经历了BoW、SPM、LLC的发展历程,目前应用比较广的是LLC。稀疏表示BoWBag Of Word(词袋)模型,是现在一种用于图像检索的一种方法。它最早用于对于文章内容的检索,原理是将文本看作是单词的集合,通

2020-06-30 22:40:26 200

原创 [持续不定时更新]机器学习踩坑记

踩坑记别问,问了都是泪啊…1. tensorflowMac OS使用pip3安装tensorflow之后(主要是为了用tensorboard)结果import的时候还是No module found,解决办法:找到安装的tensorflow的位置添加路径python3import syssys.path先通过这个找到python的位置3. 然后在那个sites的文件夹目录...

2020-04-08 15:55:22 70

原创 [Mac+Vscode]通过跳板机连接服务器

如果在终端通过ssh连接服务器的话,只需要:ssh machineA#enter your password for machineAssh machineB#enter your password for machineB 如果想要在vscode里调试代码的话(不香嘛????)需要在config文件里添加如下:Host machineA HostName machineA P...

2020-04-03 09:17:40 969

原创 [pytorch]K-means算法的实现

K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法。k-means 算法接受输入量 k ;然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。基本步骤(1) 从 n个数据对象任意选择 k 个对象作为初始聚类中心;(2) 根据每个聚类对象的均值(中心对象),计算每个对象与这...

2020-03-29 23:32:44 1551 2

原创 PCA的原理和pytorch实现

PCA的原理和pytorch实现PCA原理简介pytorch实现PCA即主成分分析在数据降维方面有着非常重要的作用,本文简单介绍其原理,并给出pytorch的实现。PCA原理简介PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是...

2020-03-29 23:14:21 3884

原创 [pytorch]数据增强的方式tranforms的使用

[pytorch]数据增强的方式tranforms的使用pytorch为我们提供了非常好的数据增强的包transforms,以下一CIFAR10为例,介绍一下用法:import torchvisionimport torchvision.transforms as transformscifar_norm_mean = (0.49139968, 0.48215827, 0.4465312...

2020-03-29 20:40:24 267

原创 [pytorch]权重初始化方法

[pytorch]权重初始化方法权重初始化的方法封装在torch.nn.init里。具体在使用的时候先初始化层之后直接调,e.g.conv = nn.Conv2d(*args, **kwargs)conv.weight.data.normal_() #w以标准正态分布初始化conv.bias.data.zero_() #偏置以0初始化常数初始化w = torch.empty(3,...

2020-03-29 17:20:00 661

原创 [pytorch]几种optimizer优化器的使用

[pytorch]几种optimizer优化器的使用optimizer的构建梯度更新的过程几种optimizerSGD+momentumAdagradRMSPropAdam梯度下降的方法可以大致分为以下三大类:标准梯度下降方法:先计算所有样本汇总误差,然后根据总误差来更新权重随机梯度下降方法:随机选取一个样本来计算误差,然后更新权重批量梯度下降方法:从总的样本中选取一个b...

2020-03-29 16:27:58 456

原创 [pytorch] pytorch常用normalization函数详解

[pytorch] pytorch常用normalization函数详解BatchNormLayerNormInstanceNormGroupNormNormalization归一化的使用在机器学习的领域中有着及其重要的作用,笔者在以前的项目中发现,有的时候仅仅给过了网络的feature加一层normzalize层,就可以让性能提高几个点,所以在这篇文章里详细介绍一下pytorch官方给出的几个...

2020-03-01 21:33:37 1351

原创 [pytorch]可视化feature map

[pytorch]可视化feature map可视化代码:transform函数:numpy转为PIL:tensor转为PIL:训练过程中调用可视化函数直接load预训练好的model并输出feature map在计算机视觉的项目中,尤其是物体分类,关键点检测等的实验里,我们常常需要可视化中间的feature map来帮助判断我们的模型是否可以很好地提取到我们想要的特征,进而帮助我们调整模型或者...

2020-02-24 18:48:54 1900 1

原创 [pytorch] torch.optimizer.lr_scheduler调整学习率

[pytorch] torch.optimizer.lr_scheduler调整学习率torch.optim.lr_scheduler.LambdaLRtorch.optim.lr_scheduler.StepLRtorch.optim.lr_scheduler.MultiStepLRtorch.optim.lr_scheduler.ExponentialLRtorch.optim.lr_sch...

2020-02-14 21:17:05 348

原创 [pytorch]训练的时候固定部分层的参数

[pytorch]训练的时候固定部分层的参数有些时候我们在写自己的网络的时候需要用到其他人或者pytorch的torchvision.models里预训练好的模型,但是我们可能希望固定一部分层的参数,在训练的时候不更新这些层的参数,这意味着我们希望反向传播计算梯度时,只计算剩余层的参数的梯度。我们知道,网络中的所有操作对象都是Variable对象,在这篇文章中笔者将介绍如何利用Variable...

2020-02-12 19:01:04 1153 6

原创 [pytorch] 使用tensorboardX可视化训练过程

[pytorch] 使用tensorboardX可视化训练过程安装tensorboardX使用tensorboardX创建writer实例使用add方法添加记录添加数字添加图片添加运行图添加高维嵌入向量其他在训练神经网络时,我们希望能更直观地了解训练情况,包括损失曲线、输入图片、输出图片、卷积核的参数分布等信息。这些信息能帮助我们更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的办法...

2020-02-06 09:43:50 558

原创 [pytorch]实现一个自己个Loss函数

[pytorch]实现一个自己个Loss函数pytorch本身已经为我们提供了丰富而强大的Loss function接口,详情可见Pytorch的十八个损失函数,这些函数已经可以帮我们解决绝大部分的问题,然而,在具体的实践过程中,我们可能发现还是存在需要自己设计Loss函数的情况,下面笔者就介绍一下如何使用pytorch设计自己的损失函数。Loss类的实现具体实践过程中,往往需要把loss ...

2020-02-03 11:42:16 930

原创 [pytorch] Tensor, numpy与PIL格式的相互转换

[pytorch] Tensor, numpy与PIL格式的相互转换PIL与TensorTensor与Numpy图片展示多张图片的转换我们一般在pytorch或者python中处理的图像无非这几种格式:PIL:使用python自带图像处理库读取出来的图片格式Numpy:使用python-opencv库读取出来的图片格式Tensor:pytorch中训练时所采取的向量格式(注意,之后的讲...

2020-02-02 23:32:24 1103

原创 [pytorch]简单CNN网络在数据集MNIST上的实现

[pytorch]简单CNN网络在数据集MNIST上的实现数据集的下载与使用简单CNN网络的设计超参设置网络训练与测试模型加载训练过程最后学习机器学习的小伙伴接触到第一个神经网络模型往往就是最简单的CNN网络,这个网络可能只有一些卷积层、池化层、激活函数和全连接层组成,但就是这样一个简单的网络其实其实在一些分类问题上已经能取得不错的效果。同样,接触到的第一个数据集也可能就是著名的手写数字数据集M...

2020-02-02 22:38:21 150

原创 [pytorch]构建并加载自己的数据集

[pytorch]构建并加载自己的数据集)pytorch为我们封装好了很多经典的数据集在torchvision.datasets包里, torchvision.datasets这个包中包含MNIST、FakeData、COCO、LSUN、ImageFolder、DatasetFolder、ImageNet、CIFAR等一些常用的数据集,并且提供了数据集设置的一些重要参数设置,可以通过简单数据集设...

2020-02-02 17:18:11 754 1

原创 [python] 用pickle保存数据

【python】用pickle保存数据pickle数据的保存pickle数据的提取在训练模型的时候,如果我们想要保留中间层的结果,比较常用的是以字典的形式保存,python为我们提供了一个很强大的库pickle来帮助我们实现这一功能。pickle数据的保存pickle可以实现保存字典和列表等数据结构,使用的方法非常简单。import pickle a_dict = {'da': 111...

2020-02-01 23:08:04 139

原创 [pytorch] torch.nn.Conv3D 的使用介绍

[pytorch] torch.nn.Conv3D 的使用介绍torch.nn.Conv3D 参数输入参数输出参数网络参数使用示例torch.nn.Conv3D 参数3D卷积, 一般是在处理的视频的时候才会使用,目的是为了提取时序信息(temporal feature),输入的size是(N,Cin,D,H,W),输出size是(N,Cout,Dout,Hout,Wout)输入参数N: ...

2020-02-01 16:00:02 1332 5

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除