简介
本文发表在MICCAI2019中,https://doi.org/10.1007/978-3-030-32248-9_18。题目为CoCa-GAN: Common-Feature-Learning Based Context-Aware Generative Adversarial Network for Glioma Grading,即基于共同特征学习的情境感知生成对抗网络实现神经胶质瘤分级。
Abstract
CoCa-GAN使用T1 MRI合成四种序列MRI完整模态,从而提高仅以T1 MRI作为输入的神经胶质瘤分级的准确性。
Method
1.common feature space
论文中的重点为公共特征空间。通过同时利用四种MRI模式以及对抗学习和情境感知学习来学习公共特征空间,训练完成后仅用T1 MRI即可得到,公共特征空间可用于生成其他三种模态的MRI、肿瘤检测、神经胶质瘤分级。为了能够训练出这样一个多功能的公共特征空间,并且是用的3D卷积,训练量可能会比较大。
2.Context-aware
题目中提到的Context-aware由Edge-aware和Tumor-aware组成,其中Edge-aware边缘感知是使用Sobel算子实现的,改用训练一个网络进行实现效果可能会更好。
Datasets
BRATS2015
Conclusion
与仅使用T1 MRI相比,共同特征学习可实现更准确的神经胶质瘤分级,并且其性能可与具有完整模态的神经胶质瘤分类相媲美。