webpack调试error太多怎么办?--webpack学习心得

        一直想着写些什么好,bug调试?常用插件及命令?还是webpack从0配置?!但是我思来想去突然想写心得,从小就有写心得的习惯。
        从初中到大学,从简单的日记记录到后来发展成的每周计划,再到现在的天天计划,其实人生就是一个成长的过程,就像我对生活记录的方式的不断变化。当我刚开始学习前端的时候,可以说我的眼里都闪烁着光,因为这个东西真的太简单了,上手容易,效果立马可查,不用配置环境还好调试。都说兴趣是最好的老师,是的,我在这种兴趣的驱使下,学到原生js的时候,不但没有觉得它难,反而觉得各种逻辑语句和中间用到的算法非常有意思;人家都说js基础打得好,学习jq一天就可以看会,但是我没有,我学习jq学习了大概有两周还是更长,当我终于可以自己手写出轮播图插件的时候,我很开心;之后就开始了h5+css3,网络部分和webpack的学习···
        webpack刚开始也是很令我头疼,老师的一个命令我可能要调试半个小时才能调试出来,以前在学校的时候碰到命令也就是在实验室,可以说我在自己的课业上并没有怎么下过功,但好歹计算机专业,也算有些基础。可学习的时候还是很慢,第一遍我要听老师的操作步骤和知识点,第二遍我自己上手的同时碰到不会的地方再返回去看视频和补充知识点,第三遍再做笔记。最后我参考自己做的每一章的笔记,将所有常用的功能全部又练了一遍,这个过程中我总结了常见的一些bug,以及常用的插件,复习了常用的命令···
        好像也没有什么要说的了,因为学习本就是这样,一步一步,我记得有个人说过一句话,当你以为自己已经学了很多的时候,其实你不过是从一座不太高的山爬上了另一座高了一些的山,不过是从一个程度的小白变成了另一个程度的小白而已,所以说,学习这件事本就靠心态调整而已,当你终于能够把哪些恶心的不行的错误自己解决掉,当你可以烦躁的时候去看看窗外放松以下然后平复心情继续回去干而不是玩手机,当你能够熟练地背下常用地插件和命令,你就已经成功了,加油吧~少年,18-28岁的年纪我们不奋斗还能干什么呢?!

`

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值