ZK性能压力是否过大的判断方法以及相关核心指标

本文讨论了在生产环境中如何通过监控机器层面的CPU、内存、load、磁盘I/O等,GC层面的oldGC频率,以及zk服务端的请求队列、watch数量、znode数量和大小等指标来判断zk集群的压力和性能瓶颈。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

zk服务端的基础指标没有发现明显异常,但是客户端时不时出现超时现象,由于部分客户端处理逻辑很简单,只是单存的读写zk,如果读写超时则断开相关链接,因此面临客户端和服务端之间的极限拉扯。对于生产环境中,如何判断一个zk集群压力,是否到达性能瓶颈,是一个重要的课题,本文探讨如何分析和判断zk集群是否压力过大,以及相关的指标。


1. 机器层面

  • cpu使用率不超过60%
  • 内存使用率不超过80%
  • 机器load不超过cpu核心数
  • 磁盘io,读写await不超1ms

2. GC层面

  • old gc不过于频繁

3. zk的相关指标

  • zk的排队请求队列,不超过200,
  • zk的watch数量,不超100w
  • zk的znode数量不超过50w
  • zk的znode大小不超过1G
  • zk的单节点连接数不超过最大连接数,也不能超过5k

4 其他指标

可以进一步参考 ZK监控方法以及核心指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值