随想录训练营37/60 | LC 1049. 最后一块石头的重量 II;LC 494. 目标和;LC 474.一和零

文章讲述了如何使用动态规划方法解决三道编程题,包括LC1049.最后一块石头的重量II,目标是找到两组石头使它们的重量差最小;LC494.目标和,要求找到数组中加减操作达到特定和的方式数;以及LC474.一和零,求解在限制条件下的最大子集个数。这些问题的核心是通过一维或二维动态规划数组进行优化求解。

LC 1049. 最后一块石头的重量 II

题目链接LC 1049. 最后一块石头的重量 II
思路:和分割等和子集很像,都是将数组分成两组,让这两组数之和的差尽可能的小。
代码

class Solution {
public:
    //本质就是将石头分成两组,两组互相抵消,得到最小的重量
    //与上一章节的分割等子集类似,都是将数组分成尽可能相似的两组
    int lastStoneWeightII(vector<int>& stones) {
        int sum = 0;
        for(int a : stones){
            sum += a;
        }
        int target = sum/2;//只需下取整,得到的值都是比较小的,最后让sum-target得到的值*2,即可
        vector<int> dp(target+1);//使用一维dp数组
        //dp数组的[i][j]表示在从0-i中选容量最大为j的物品的价值(价值和重量相同,但是不一定能沾满背包)
        //dp数组初始化
        for(int b=0; b<dp.size(); b++){
            if(b>=stones[0])dp[b] = stones[0];
            else dp[b] = 0;
        }
        //更新数组
        for(int i=1; i<stones.size(); i++){
            for(int j=dp.size()-1; j>=stones[i]; j--){
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]); 
            }
        }
        int result = sum - dp.back() - dp.back();
        return result;
    }
};

LC 494. 目标和

题目链接LC 494. 目标和
思路:先按着二维的dp数组进行推导。然后转化为一维数组。主要思路就是,将数组分成两部分,一部分是加,一部分是减,加和减能通过输入确定下来,然后只需选加的部分有几种情况就可以。
代码

class Solution {
public:
    //按照背包的思路解
    //将数组分成两组:一组是加的,一组是减的,jia—jian = target
    //jia+jain = sum,其中sum和target是已知的,所以jia = (target+sum)/2
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = 0;
        for(int a:nums){
            sum += a;
        }
        int x = target + sum;
        if(x%2 == 1)return 0;//当x是奇数的时候,直接返回
        x = x/2;
        if(abs(target)>sum)return 0;//当target太大或者太小时,就直接返回
        //将不能满足的情况删除后,就判断多少组合之和为x
        //dp纵坐标含义为子数组组合之和,dp内的值表示可通过之前的值组合得到列值的个数
        vector<int> dp(x+1, 0);
        //初始化dp
        dp[0] = 1;//子数组之和为0,就一种情况所有的都不选
        //更新dp
        for(int i=0; i<nums.size(); i++){
            for(int j=dp.size()-1; j>=nums[i]; j--){
                dp[j] = dp[j]+dp[j-nums[i]];
            }
        }
        return dp.back();

    }
};

LC 474.一和零

题目链接LC 474.一和零
思路:之前是一维的滚动数组,这道题有两个约束,所以用二维滚动数组,数组内的值表示最大的子集数量,当加入一个新字符串时,判断子集上次或者加这次之后,哪个子集长一些,哪个长就选择哪个。
代码

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m+1, vector<int>(n+1));//二维dp数组,值为最大的子集个数
        for(string s:strs){
            //判断每个字符串有多少0和1
            int zero = 0;
            int one = 0;
            for(char c : s){
                if(c=='0')zero++;
                if(c=='1')one++;
            }
            for(int i=dp.size()-1; i>=zero; i--){//m
                for(int j=dp[0].size()-1; j>=one; j--){//n
                    dp[i][j] = max(dp[i][j], dp[i-zero][j-one]+1);
                }
            }
        }
        return dp[m][n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值