LC 704 二分查找
题目链接:LC 704 二分查找
思路:双指针法,两指针 L,R 分别初始化为数组开头和结尾,比较数组的第 [L+R]/2 位置的值与目标值,若大于目标值,则缩小 R ;若小于目标值,则增加L;若等于目标值,则返回数组下标;若 L>R 则返回 -1。
注意,目标值所在区间,左闭右闭,与左闭右开代码细节不同
代码:
class Solution {
public:
int search(vector<int>& nums, int target) {//左闭右闭
int r = nums.size()-1;
int l = 0;
while(l<=r){
int temp = (r+l)/2;
if(target == nums[temp]) return temp;
else if(target > nums[temp]) l = temp+1;
else if(target < nums[temp]) r = temp-1;
}
return -1;
}
int search(vector<int>& nums, int target) {//左闭右开
int r = nums.size();
int l = 0;
while(l<r){
int temp = (r+l)/2;
if(target == nums[temp]) return temp;
else if(target > nums[temp]) l = temp+1;
else if(target < nums[temp]) r = temp;
}
return -1;
}
};
LC 27 移除元素
题目链接:LC 27 移除元素
思路:双指针法,一个指针遍历旧数组,一个指针指向新数组的最后一个元素。遍历数组,若当前值不为目标值,则将旧数组指针赋值到新数组指针;若为目标值则跳过。
代码:
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int l = 0;
for(int r=0; r<nums.size(); ++r){
if(nums[r] != val){
nums[l] = nums[r];
++l;
}
}
return l;
}
};
---------------------------------------------------------------额外题目----------------------------------------------------------
(以上为训练营每日任务,本部分为自己刷题进度)
LC 35 搜索插入位置
题目链接:LC 35 搜索插入位置
思路:是二分查找的延深,跳出循环后,找到一个位置R,其满足nums[R-1]<target && nums[R]>target,并且返回R。
代码:
class Solution {
public:
int searchInsert(vector<int>& nums, int target) {
int l = 0;
int r = nums.size()-1;
while(l<=r){
int temp = (l+r)/2;
if(nums[temp] == target) return temp;
else if(target > nums[temp]) l = temp+1;
else if(target < nums[temp]) r = temp-1;
}
return l;
}
};
LC 34 在排序数组中查找元素的第一个和最后一个位置
题目链接:LC 34 在排序数组中查找元素的第一个和最后一个位置
思路:双指针法,找左右边界分别用一次双指针。找左边界时,返回跳出的右指针;找右边界时,返回跳出的左指针。也可以不使用双指针,直接遍历有序数组。
代码:
class Solution {
public:
//找左边界
int searchLeft(vector<int>& nums, int target){
int l = 0;
int r = nums.size()-1;
int lBound = -2;//-1可能是边界,所以初始化为-2
while(l<=r){
int temp = (l + r)/2;
if(target > nums[temp]) l = temp+1;
else{
r = temp-1;
lBound = r;
}
}
return lBound;
}
//找右边界
int searchRight(vector<int>& nums, int target){
int l = 0;
int r = nums.size()-1;
int rBound = -2;//-1可能是边界,所以初始化为-2
while(l<=r){
int temp = (l + r)/2;
if(target < nums[temp]) r = temp-1;
else{
l = temp+1;
rBound = l;
}
}
return rBound;
}
vector<int> searchRange(vector<int>& nums, int target) {
int rB = searchRight(nums, target);
int lB = searchLeft(nums, target);
if(rB==-2 || lB==-2) return{-1,-1};//当target不在数组范围时
if(rB-lB>1)return{lB+1,rB-1};//当target在数组范围且找到target时
return{-1,-1};//当target在数组范围但找不到target时
}
};