Segment Occurrences
time limit per test2 seconds
memory limit per test256 megabytes
Problem descrip
You are given two strings s and t, both consisting only of lowercase Latin letters.
The substring s[l…r] is the string which is obtained by taking characters sl,sl+1,…,sr without changing the order.
Each of the occurrences of string a in a string b is a position i (1≤i≤|b|−|a|+1) such that b[i…i+|a|−1]=a (|a| is the length of string a).
You are asked q queries: for the i-th query you are required to calculate the number of occurrences of string t in a substring s[li…ri].
Input
The first line contains three integer numbers n, m and q (1≤n,m≤103, 1≤q≤105) — the length of string s, the length of string t and the number of queries, respectively.
The second line is a string s (|s|=n), consisting only of lowercase Latin letters.
The third line is a string t (|t|=m), consisting only of lowercase Latin letters.
Each of the next q lines contains two integer numbers li and ri (1≤li≤ri≤n) — the arguments for the i-th query.
Output
Print q lines — the i-th line should contain the answer to the i-th query, that is the number of occurrences of string t in a substring s[li…ri].
input
10 3 4
codeforces
for
1 3
3 10
5 6
5 7
output
0
1
0
1
input
15 2 3
abacabadabacaba
ba
1 15
3 4
2 14
output
4
0
3
input
3 5 2
aaa
baaab
1 3
1 1
output
0
0
题目大意:第一行输入n, m, q 分别代表文本串的长度,模式串的长度和测试次数。输入文本串和模式串,设第三行后每行输入statr和end,让你找在两者之间出现过几次模式串。之前有一个题是寻找模式串在文本串中出现几次,简单修改一下kmp函数中的count和返回值即可,而这个题又增加了一点是:在start和end之间,模式串出现过几次。
所以,设立一个新数组net [ ],在每次输入start和end之后,将文本串的这个范围内的字符串赋值到net[ ],将net[ ] 当成新的文本串KMP就行了。
有一个小技巧是为net[ ]赋初值的问题:
char net[2000] = {'\0'};
这样,net的长度就不会出错了,就是存在字符的真正长度。
AC代码如下:
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
using namespace std;
char t[2000];
char p[2000];
int nxt[2000];
//建立公共前后缀表, /*****next[j] = k 代表p[j] 之前的模式串子串中,有长度为k 的相同前缀和后缀*****/
void GetNext(char p[], int nxt[]){ //
int i, j;
int m = strlen(p);
nxt[0] = 0;
for(j = 1, i = 0; j < m; j++){ //前缀 i,从0开始 后缀j,从1开始
while(i > 0 && p[j] != p[i])
i = nxt[i-1];
if(p[j] == p[i]){ //前后匹配时,next就加一
i++;
}
nxt[j] = i; //①p[j] != p[i] && i == 0,赋值0
//②p[j] == p[i] && i == 0,i已经加一(i在原匹配串上增加)
} //③p[j] == p[i] && i != 0,回溯过后,给值为第一次匹配的后一位
}
int kmp(char t[], char p[], int nxt[]){
unsigned long n, m;
int i, q, count = 0;
n = strlen(t);
m = strlen(p);
GetNext(p, nxt);
for(i = 0, q = 0; i < n; ++i){
while(q > 0 && p[q] != t[i])
q = nxt[q-1];
if(p[q] == t[i]){
q++;
}
if(q == m){
count ++;
}
}
return count;
}
int main(){
int n, m, q, st, en;
while(scanf("%d %d %d", &n, &m, &q) != EOF){
scanf("%s", t);
scanf("%s", p);
while(q--){
char net[2000] = {'\0'};
scanf("%d %d", &st, &en);
// printf("%d %d", st, en);
for(int i = st-1, j = 0; i < en; i++)
net[j++] = t[i];
int ans = kmp(net, p, nxt);
// printf("%s", net);
printf("%d\n", ans);
}
}
return 0;
}