题目描述
设有N*N的方格图(N ≤ 10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0。如下图所示(见样例):
某人从图的左上角的A 点出发,可以向下行走,也可以向右走,直到到达右下角的B点。在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从A点到B 点共走两次,试找出2条这样的路径,使得取得的数之和为最大。
输入描述:
输入的第一行为一个整数N(表示N*N的方格图),接下来的每行有三个整数,前两个表示位置,第三个数为该位置上所放的数。一行单独的0表示输入结束。
输出描述:
只需输出一个整数,表示2条路径上取得的最大的和
示例1
输入
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出
67
分析:两次一起走,第一次是是i j 第二次是 k l
如果走到相同 那么dp值要减去相同的值
#include <iostream>
#include <algorithm>
using namespace std;
int mp[15][15];
int dp[15][15][15][15];
int main(){
int N;
scanf("%d",&N);
int x,y,z;
while(~scanf("%d%d%d",&x,&y,&z)){
if(x==0 && y==0 &&z==0 ) break;
mp[x][y]=z;
}
dp[1][1][1][1]=mp[1][1];
for(int i=1;i<=N;i++){
for(int j=1;j<=N;j++){
for(int k=1;k<=N;k++){
for(int l=1;l<=N;l++){
dp[i][j][k][l]= mp[i][j]+mp[k][l]+max( max(dp[i-1][j][k-1][l] , dp[i][j-1][k][l-1]) , max( dp[i-1][j][k][l-1] , dp[i][j-1][k-1][l]) );
if(i == k && j == l)// 排除两条路径的交点
dp[i][j][k][l] -= mp[i][j];
}
}
}
}
printf("%d\n",dp[N][N][N][N]);
return 0;
}