AI 相关术语大全
1. 基础术语
- AI(Artificial Intelligence,人工智能):让机器模拟人类智能的技术。
- ML(Machine Learning,机器学习):让机器从数据中学习模式,不依赖硬编码规则。
- DL(Deep Learning,深度学习):基于神经网络的机器学习方法,能够学习复杂特征。
- Big Data(大数据):用于训练 AI 模型的大规模数据集。
- Algorithm(算法):用于训练 AI 的数学计算方法。
- NLP(Natural Language Processing,自然语言处理):让机器理解、生成和处理人类语言的技术,包括机器翻译、语音识别、文本分析等(如 BERT、GPT)。
- CV(Computer Vision,计算机视觉):让计算机处理、分析和理解图像或视频的技术,包括目标检测、图像分类等(如 CNN、YOLO)。
- RL(Reinforcement Learning,强化学习):让智能体通过试错学习最优策略的 AI 方法,应用于机器人、游戏 AI、自动驾驶等(如 Q-learning、PPO)。
2. 机器学习(ML)
- Supervised Learning(监督学习):训练数据带有标签,如分类、回归任务。
- Unsupervised Learning(无监督学习):训练数据无标签,如聚类、降维任务。
- Semi-supervised Learning(半监督学习):部分数据带标签,部分无标签。
- Reinforcement Learning(强化学习,RL):智能体通过试错学习最佳策略。
- Feature Engineering(特征工程):选择和转换数据特征以提高模型表现。
- Overfitting(过拟合):模型在训练集表现好,但泛化能力差。
- Underfitting(欠拟合):模型过于简单,无法学习数据中的模式。
- Cross-validation(交叉验证):用于评估模型性能的技术。
3. 深度学习(DL)
- Neural Network(神经网络):模拟人脑神经元的计算架构。
- CNN(Convolutional Neural Network,卷积神经网络):擅长处理图像任务的网络结构。
- RNN(Recurrent Neural Network,循环神经网络):适用于序列数据(如文本、语音)。
- LSTM(Long Short-Term Memory,长短时记忆网络):一种改进的 RNN,能长期记忆。
- Transformer(变换器):NLP 领域的主流架构,GPT、BERT 等模型的基础。
- GAN(Generative Adversarial Network,对抗生成网络):生成数据(如 Deepfake)。
4. 自然语言处理(NLP)
- Tokenization(分词):把文本拆分成最小的词或子词单元。
- Embedding(嵌入):将文本转换成向量(如 Word2Vec、BERT embedding)。
- Attention(注意力机制):让模型关注重要的输入部分(Transformer 关键技术)。
- NER(Named Entity Recognition,命名实体识别):识别文本中的专有名词,如人名、地点。
- Sentiment Analysis(情感分析):判断文本的情绪倾向(积极/消极)。
- Text Generation(文本生成):如 GPT 生成文章。
5. 计算机视觉(CV)
- Object Detection(目标检测):检测图像中的物体及其位置。
- Segmentation(图像分割):像素级分类,如语义分割、实例分割。
- OCR(Optical Character Recognition,光学字符识别):从图像中提取文字。
- GANs(生成对抗网络):用于图像生成(如 AI 绘画)。
- Style Transfer(风格迁移):把一张图片的风格应用到另一张图片上。
6. 强化学习(RL)
- Agent(智能体):在环境中学习和行动的实体。
- Environment(环境):智能体与之交互的世界。
- Reward(奖励):智能体根据行动获得的反馈。
- Policy(策略):智能体决定行动的规则。
- Q-Learning:一种无模型强化学习方法。
- Deep Q-Network(DQN):结合深度学习的 Q-Learning 方法。
7. 其他
- Bias(偏差):模型预测与真实值之间的系统性误差。
- Variance(方差):模型对数据变化的敏感程度,高方差可能导致过拟合。
- Gradient Descent(梯度下降):用于优化模型的算法。
- Backpropagation(反向传播):神经网络训练时的核心方法。
- Epoch(训练轮数):模型遍历数据集的次数。
- Batch Size(批量大小):每次训练时处理的数据量。
- Fine-tuning(微调):在预训练模型的基础上优化特定任务。