AI 相关术语大全(一)

AI 相关术语大全

1. 基础术语

  • AI(Artificial Intelligence,人工智能):让机器模拟人类智能的技术。
  • ML(Machine Learning,机器学习):让机器从数据中学习模式,不依赖硬编码规则。
  • DL(Deep Learning,深度学习):基于神经网络的机器学习方法,能够学习复杂特征。
  • Big Data(大数据):用于训练 AI 模型的大规模数据集。
  • Algorithm(算法):用于训练 AI 的数学计算方法。
  • NLP(Natural Language Processing,自然语言处理):让机器理解、生成和处理人类语言的技术,包括机器翻译、语音识别、文本分析等(如 BERT、GPT)。
  • CV(Computer Vision,计算机视觉):让计算机处理、分析和理解图像或视频的技术,包括目标检测、图像分类等(如 CNN、YOLO)。
  • RL(Reinforcement Learning,强化学习):让智能体通过试错学习最优策略的 AI 方法,应用于机器人、游戏 AI、自动驾驶等(如 Q-learning、PPO)。

2. 机器学习(ML)

  • Supervised Learning(监督学习):训练数据带有标签,如分类、回归任务。
  • Unsupervised Learning(无监督学习):训练数据无标签,如聚类、降维任务。
  • Semi-supervised Learning(半监督学习):部分数据带标签,部分无标签。
  • Reinforcement Learning(强化学习,RL):智能体通过试错学习最佳策略。
  • Feature Engineering(特征工程):选择和转换数据特征以提高模型表现。
  • Overfitting(过拟合):模型在训练集表现好,但泛化能力差。
  • Underfitting(欠拟合):模型过于简单,无法学习数据中的模式。
  • Cross-validation(交叉验证):用于评估模型性能的技术。

3. 深度学习(DL)

  • Neural Network(神经网络):模拟人脑神经元的计算架构。
  • CNN(Convolutional Neural Network,卷积神经网络):擅长处理图像任务的网络结构。
  • RNN(Recurrent Neural Network,循环神经网络):适用于序列数据(如文本、语音)。
  • LSTM(Long Short-Term Memory,长短时记忆网络):一种改进的 RNN,能长期记忆。
  • Transformer(变换器):NLP 领域的主流架构,GPT、BERT 等模型的基础。
  • GAN(Generative Adversarial Network,对抗生成网络):生成数据(如 Deepfake)。

4. 自然语言处理(NLP)

  • Tokenization(分词):把文本拆分成最小的词或子词单元。
  • Embedding(嵌入):将文本转换成向量(如 Word2Vec、BERT embedding)。
  • Attention(注意力机制):让模型关注重要的输入部分(Transformer 关键技术)。
  • NER(Named Entity Recognition,命名实体识别):识别文本中的专有名词,如人名、地点。
  • Sentiment Analysis(情感分析):判断文本的情绪倾向(积极/消极)。
  • Text Generation(文本生成):如 GPT 生成文章。

5. 计算机视觉(CV)

  • Object Detection(目标检测):检测图像中的物体及其位置。
  • Segmentation(图像分割):像素级分类,如语义分割、实例分割。
  • OCR(Optical Character Recognition,光学字符识别):从图像中提取文字。
  • GANs(生成对抗网络):用于图像生成(如 AI 绘画)。
  • Style Transfer(风格迁移):把一张图片的风格应用到另一张图片上。

6. 强化学习(RL)

  • Agent(智能体):在环境中学习和行动的实体。
  • Environment(环境):智能体与之交互的世界。
  • Reward(奖励):智能体根据行动获得的反馈。
  • Policy(策略):智能体决定行动的规则。
  • Q-Learning:一种无模型强化学习方法。
  • Deep Q-Network(DQN):结合深度学习的 Q-Learning 方法。

7. 其他

  • Bias(偏差):模型预测与真实值之间的系统性误差。
  • Variance(方差):模型对数据变化的敏感程度,高方差可能导致过拟合。
  • Gradient Descent(梯度下降):用于优化模型的算法。
  • Backpropagation(反向传播):神经网络训练时的核心方法。
  • Epoch(训练轮数):模型遍历数据集的次数。
  • Batch Size(批量大小):每次训练时处理的数据量。
  • Fine-tuning(微调):在预训练模型的基础上优化特定任务。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值