Hibernate环境搭建及第一个Hibernate程序

hibernate环境搭建

去官网下载好hibernate后,还需要使用该框架我们还需要使用mysql的jar包,这里可以去官网下载,也可以点击该链接
链接:https://pan.baidu.com/s/1pSX-FnGr3GIk3BraeXB0_Q 密码:j9we
接下来我们就有了搭建hibernate所需要的两个文件,如图:
在这里插入图片描述
资源准备好后我们就来到eclipse,创建java project,然后再工程目录下创建一个Folder名为lib,如图:
在这里插入图片描述
把hibernate文件夹里面的hibernate\hibernate-release-5.4.3.Final\lib\required里面的全部jar包及mysql的jdbc连接jar包粘到lib里面:
在这里插入图片描述

在这里插入图片描述

测试hibernate环境

现在环境就搭建好了,接下来就是写测试程序测试环境是否好使:
1.先到mysql创建一个简单的数据库:
在这里插入图片描述
2.回到eclipse,创建好要写入数据库的实体类:

package com.javaBean;

public class Person 
{
	private Integer id;
	private String name;
	private int age;
	private int score;
	public Integer getId() {
		return id;
	}
	public void setId(Integer id) {
		this.id = id;
	}
	public String getName() {
		return name;
	}
	public void setName(String name) {
		this.name = name;
	}
	public int getAge() {
		return age;
	}
	public void setAge(int age) {
		this.age = age;
	}
	public int getScore() {
		return score;
	}
	public void setScore(int score) {
		this.score = score;
	}
	@Override
	public String toString() {
		return "Person [id=" + id + ", name=" + name + ", age=" + age + ", score=" + score + "]";
	}
	public Person() 
	{
		
	}
	public Person(String name, int age, int score) {
		super();
		this.name = name;
		this.age = age;
		this.score = score;
	}
	
}

3.书写映射文件(orm元数据),后缀为.hbm.xml。要和实体类在同一个包下,如图:
在这里插入图片描述
在这里插入图片描述
代码:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-mapping PUBLIC 
    "-//Hibernate/Hibernate Mapping DTD 3.0//EN"
    "http://www.hibernate.org/dtd/hibernate-mapping-3.0.dtd">
    <!-- 配置表与实体的关系 -->
<hibernate-mapping package="com.javaBean">
	<!-- 
        class元素:配置实体与表的关系
            name:完整类名
            table:数据库表名
     -->
	<class name="Person" table="t_person">
	
		<!-- 
            id元素:配置主键映射的属性
                name:填写主键对应的属性名
                column(可选):填写表中的主键列名,默认值:属性名
                type(可选):填写列(属性)的类型,hibernate会自动检测属性类型
                    每个属性类型有三种写法:java|hibernate|sql|
                not-null(可选):配置该属性是否不能为空,默认值:fasle
                length(可选):配置数据库中列的长度,默认值使用的数据类型的最大长度
         -->
		<id name="id" column="t_id">
			<!-- generator:主键生成策略 -->
			<generator class="native"></generator>
		</id>
		
		<!-- property:除了id之外的普通属性映射-->
		<property name="name" column="t_name"></property>
		<property name="age" column="t_age"></property>
		<property name="score" column="t_score"></property>
	</class>
</hibernate-mapping>

4.书写主配置文件,文件名为hibernate.cfg.xml。主配置文件要求在src文件夹目录下,最后文件位置如图:
在这里插入图片描述
代码:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE hibernate-configuration PUBLIC
	"-//Hibernate/Hibernate Configuration DTD 3.0//EN"
	"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">
<hibernate-configuration>
	<session-factory>
		<!-- 数据库驱动 -->
        <property name="hibernate.connection.driver_class">com.mysql.jdbc.Driver</property>
        <!-- 数据库url -->
        <property name="hibernate.connection.url">jdbc:mysql:///test</property>
        <!-- 数据库连接用户名 -->
        <property name="hibernate.connection.username">root</property>
        <!-- 数据库连接密码 -->
        <property name="hibernate.connection.password">123</property>
        <!-- 数据库方言 -->
        <property name="hibernate.dialect">org.hibernate.dialect.MySQLDialect</property>

        <!-- 把hibernate执行sql语句打印到控制台 -->
        <property name="hibernate.show_sql">true</property>
        <!-- 把生成的sql格式化一下,方便阅读  -->
        <property name="hibernate.format_sql">true</property>
        <!-- 自动建表 -->
        <property name="hibernate.hbm2ddl.auto">update</property>
        <!-- 引入orm元数据
			路径书写: 填写src下的路径
			/Hibernate_Person/src/
		 -->
		<mapping resource="com/javaBean/Person.hbm.xml" />
	</session-factory>
</hibernate-configuration>

5.书写测试类,验证是否能成功:
代码:

package com.util;
import org.hibernate.Session;
import org.hibernate.SessionFactory;
import org.hibernate.Transaction;
import org.hibernate.cfg.Configuration;
import com.javaBean.Person;
public class TestSava 
{
	public static void main(String[] args)
	{
		Configuration conf = new Configuration().configure();
        SessionFactory sessionFactory = conf.buildSessionFactory();
        Session session = sessionFactory.openSession();
        Transaction transaction = session.beginTransaction();
        Person p = new Person("张三",21,95);
        session.save(p);
		transaction.commit();
        session.close();
        sessionFactory.close();
	}
}

运行结果:

eclipse界面:
在这里插入图片描述
数据库:
在这里插入图片描述
数据已成功写入数据库,运行成功!说明环境搭建成功了!

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值