标题: MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction
期刊: Reliability Engineering & System Safety (中科院1区top, JCR Q1, IF=9.4) 2024年1月发表
原文链接: https://doi.org/10.1016/j.ress.2023.109696
引用格式: Fu S, Lin L, Wang Y, et al. MCA-DTCN: A novel dual-task temporal convolutional network with multi-channel attention for first prediction time detection and remaining useful life prediction[J]. Reliability Engineering & System Safety, 2024, 241: 109696. https://doi.org/10.1016/j.ress.2023.109696.
前言
本文提出了一种新颖的具有多通道注意力机制的双任务时间卷积神经网络(MCA-DTCN),将首次预测时间(F性能衰退拐点,FPT)检测和剩余使用寿命(RUL)预测集成到一个框架中,使监测对健康阶段和恶化阶段更加敏感。首先,将MCA-TCN设计为特征提取器,从多维时间序列监测数据中提取具有代表性的退化特征。多通道注意力机制的引入使MCA-TCN能够自动突出有用的性监测参数和退化特征。其次,开发了一种新的双任务学习机制,并行完成FPT检测和RUL预测,以相互补充,实现更好的维护决策。双任务学习机制由两个子网络组成,即使用分类子网络检测FPT,使用回归子网络预测RUL,并通过优化新的融合损失函数对它们进行联合训练。
一. 论文解决的问题
- 机械设备的退化过程大致可分为两个阶段:健康阶段和不健康阶段。在健康阶段,没有发生故障,性能退化曲线(HI)呈现出几乎不变的趋势;相反地,在不健康阶段,HI曲线随着机械设备的退化而显著降低,使其更容易发生故障。RUL预测应从不健康阶段的开始时间触发,即首次预测时间(FPT),如图所示。
- 众多传感器可以采集多维的信号,但是往往只有部分参数对RUL具有重要意义,冗余参数会导致预测误差和时间消耗增加。
- 航空发动机的性能退化在不同的时间点中具有一定的累积作用。目前许多现有的预测方法采用基于CNN或基于RNN的技术来处理多维时间序列监测数据,无法捕捉长时间序列数据的依耐性。