使用Python分析网易云歌曲评论信息并可视化处理

本文介绍了如何使用Python爬取和处理网易云音乐的歌曲评论,包括数据获取、预处理、情感分析、关键词提取,并通过可视化手段展示评论情感分布和关键词频率,以深入了解用户对歌曲的态度和偏好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、引言

二、数据获取与预处理

分析网页结构

编写爬虫代码

数据预处理

三、评论分析

情感分析

关键词提取

四、可视化处理

评论情感分布可视化

2. 关键词词云可视化    

评论时间分布可视化

五、总结


一、引言

在数字化时代,音乐与我们的生活紧密相连,而网易云音乐作为国内知名的音乐平台,拥有庞大的用户群体和丰富的歌曲评论信息。这些评论信息不仅反映了用户对于歌曲的情感态度,还蕴含着大量的有价值的数据。通过对这些评论信息进行分析和可视化处理,我们可以更好地理解用户的喜好、情感变化以及歌曲的影响力。本文将介绍如何使用Python对网易云歌曲的评论信息进行分析,并通过可视化手段展示分析结果,帮助新手朋友更好地理解和应用相关技术。

二、数据获取与预处理

在进行评论分析之前,我们首先需要获取网易云歌曲的评论数据。由于网易云音乐的数据接口并不直接对外开放,因此我们可以利用爬虫技术来爬取数据。这里以爬取指定歌曲的评论为例,介绍数据获取的基本流程。

【资源说明】 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 数据仓库与数据挖掘课程设计。基于自然语言处理歌曲评论情感分析,通过爬虫爬取网易云音乐歌曲评论通过LSTM模型分析音乐评论的情感分布。 依赖 ``` pip3 install -r requirements.txt ``` 组成 * webspider.py 爬虫 * statistic.py 统计评论情感分布 * wordcloud 词云 运行 训练LSTM模型,使用的数据集在`nlp/data/`目录下: ``` cd nlp python3 lstm.py ``` 爬取网易云歌曲评论: ``` python3 webspider.py ``` 用LSTM评价歌曲评论: ``` python3 statistic.py ``` 对歌曲评论绘制词云: ``` python3 wordcloud.py ``` 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻啦嘿哟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值