使用Python分析网易云歌曲评论信息并可视化处理

本文介绍了如何使用Python爬取和处理网易云音乐的歌曲评论,包括数据获取、预处理、情感分析、关键词提取,并通过可视化手段展示评论情感分布和关键词频率,以深入了解用户对歌曲的态度和偏好。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、引言

二、数据获取与预处理

分析网页结构

编写爬虫代码

数据预处理

三、评论分析

情感分析

关键词提取

四、可视化处理

评论情感分布可视化

2. 关键词词云可视化    

评论时间分布可视化

五、总结


一、引言

在数字化时代,音乐与我们的生活紧密相连,而网易云音乐作为国内知名的音乐平台,拥有庞大的用户群体和丰富的歌曲评论信息。这些评论信息不仅反映了用户对于歌曲的情感态度,还蕴含着大量的有价值的数据。通过对这些评论信息进行分析和可视化处理,我们可以更好地理解用户的喜好、情感变化以及歌曲的影响力。本文将介绍如何使用Python对网易云歌曲的评论信息进行分析,并通过可视化手段展示分析结果,帮助新手朋友更好地理解和应用相关技术。

二、数据获取与预处理

在进行评论分析之前,我们首先需要获取网易云歌曲的评论数据。由于网易云音乐的数据接口并不直接对外开放,因此我们可以利用爬虫技术来爬取数据。这里以爬取指定歌曲的评论为例,介绍数据获取的基本流程。

【资源说明】 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 基于LSTM的网易云音乐评论分析python源码+使用说明+数据集+模型.zip 数据仓库与数据挖掘课程设计。基于自然语言处理歌曲评论情感分析,通过爬虫爬取网易云音乐歌曲评论通过LSTM模型分析音乐评论的情感分布。 依赖 ``` pip3 install -r requirements.txt ``` 组成 * webspider.py 爬虫 * statistic.py 统计评论情感分布 * wordcloud 词云 运行 训练LSTM模型,使用的数据集在`nlp/data/`目录下: ``` cd nlp python3 lstm.py ``` 爬取网易云歌曲评论: ``` python3 webspider.py ``` 用LSTM评价歌曲评论: ``` python3 statistic.py ``` 对歌曲评论绘制词云: ``` python3 wordcloud.py ``` 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
### 网易云音乐数据爬取可视化 #### 使用Python进行网易云音乐评论数据的爬取 为了实现网易云音乐评论数据的爬取,通常会采用`requests`库来发送HTTP请求接收响应。由于网易云音乐API接口可能带有加密参数或需要特定的头部信息,因此建议使用浏览器开发者工具中的网络监视功能找到确切的请求URL和所需参数[^3]。 ```python import requests import json url = "https://music.163.com/weapi/comment/resource/comments/get" headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)', 'Referer': 'http://music.163.com/' } data = {"rid": "", "offset": "0", "total": "true", "limit": "20", "csrf_token": ""} response = requests.post(url, headers=headers, data=data).json() comments = response['hotComments'] for comment in comments: print(comment['content']) ``` 这段代码展示了如何向指定的API端点发起POST请求,解析返回JSON对象内的热门评论列表。 #### 数据清洗过程 在获得原始评论数据之后,下一步是对这些数据进行必要的清理工作。这一步骤旨在移除不必要的字符、过滤掉重复项以及标准化文本格式以便后续分析。Pandas是一个非常适合用于此目的的强大库: ```python import pandas as pd df = pd.DataFrame(comments) # 去重操作 df.drop_duplicates(subset=['commentId'], inplace=True) # 清理特殊符号和其他不需要的内容 def clean_text(text): import re text = re.sub(r'\[.*?\]', '', text) # 移除表情包标签 return text.strip() df['cleanedContent'] = df['content'].apply(clean_text) ``` 上述脚本创建了一个DataFrame结构存储评论记录,定义了一个函数用来去除每条评论里的多余部分[^1]。 #### 可视化展示方案 对于可视化的具体实施方式取决于想要表达的信息类型和个人偏好。Matplotlib和Seaborn是两个广泛使用的绘图库;而WordCloud则特别适合制作词频统计图表。下面给出了一些简单的例子说明怎样利用它们来进行初步探索性数据分析: ##### 绘制情感分布直方图 假设已经有一个字段表示每条评论的情感倾向(正面/负面),那么可以通过柱状图直观地看出整体情绪偏向情况: ```python import matplotlib.pyplot as plt from collections import Counter sentiment_counts = dict(Counter(df['sentiment'])) plt.bar(sentiment_counts.keys(), sentiment_counts.values()) plt.xlabel('Sentiment') plt.ylabel('Count') plt.title('Distribution of Sentiments') plt.show() ``` ##### 创建关键词云图 如果更关心哪些词语最常被提及,则可以考虑构建一个基于频率的关键字云图像: ```python from wordcloud import WordCloud text = " ".join(review for review in df.cleanedContent) wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text) plt.figure(figsize=(10, 5)) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show() ``` 以上就是关于网易云音乐评论数据抓取及其可视化的一些基本指导思路[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻啦嘿哟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值