目录
2.2 变分自编码器(Variational Autoencoders, VAEs)
2.3 生成对抗网络(Generative Adversarial Networks, GANs)
引言
无监督生成模型是机器学习中的一个重要分支,其独特之处在于能够从未标记的数据中学习数据的内在分布,并生成与原始数据相似的新样本。这些模型在图像生成、自然语言处理、数据增强等多个领域展现出巨大的应用潜力。本文将详细介绍Python中无监督生成模型的基本理论、常用模型、实现方法以及实际应用案例,旨在帮助新手朋友快速入门并深入理解这一领域。
一、无监督生成模型概述
1.1 生成模型的定义
生成模型(Generative Models)是一种试图捕捉数据分布并生成新样本的机器学习模型。与判别模型(Discriminative Models)不同,生成模型不仅学习输入到输出的映射关系,