第一步:导入各类库
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.naive_bayes import GaussianNB
import matplotlib
%matplotlib inline
1.NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
2.Matplotlib 是 Python 2D-绘图领域使用最广泛的套件。它能让使用者很轻松地将数据图形化,并且提供多样化的输出格式。其中Pyplot是 Matplotlib 的子库,提供了和 MATLAB 类似的绘图 API,是常用的绘图模块,能很方便让用户绘制 2D 图表。示例如下:
3.scikit-learn,又写作sklearn,是一个开源的基于python语言的机器学习工具包,包含许多机器学习的算法,比如引入高斯朴素贝叶斯分类器GaussianNB。
第二步:建立 生成所有测试样本点 的函数
def make_meshgrid(x, y, h=.02):
x_min, x_max = x.min() - 1, x.max() + 1
y_min, y_max = y.min() - 1, y.max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h