CodeForces - 246E Tree and Queries (dsu on tree)

这篇博客探讨了一种解决离线子树问题的方法,通过深度优先搜索(DFS)和并查集(DSU)优化来处理树上节点的查询。题目描述了一个家族树的非连通关系,询问特定节点的指定代数孩子的不同名字数量。解法中,利用深度和哈希映射来记录名字计数,并维护每一代的不同名字数量,最后输出查询结果。
摘要由CSDN通过智能技术生成

CodeForces - 246E Tree and Queries

题意

一个家族有 n n n 个人,构成了树的关系,但不一定是连通的。每个人有一个名字,但是名字不一定是唯一的。给出 q q q 个询问,每次询问编号为 v v v 的节点第 k k k 代孩子有多少不同的名字。

解法

离线的子树问题,考虑dsu on tree

  • 先记录下每个询问,即以节点 v v v 为根有几次询问,记录是第几次询问以及 k k k 的值;
  • 第几代孩子可以用深度来维护;
  • m a p map map 来记录名字出现的次数,用一个 c n t t cntt cntt 数组来维护某深度有几个不同的名字;
  • 需要注意深度的大小,开两倍空间或者维护最大深度即可。
解法
#pragma region
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <map>
#include <queue>
#include <set>
#include <vector>
using namespace std;
typedef long long ll;
#define tr t[root]
#define lson t[root << 1]
#define rson t[root << 1 | 1]
#define rep(i, a, n) for (int i = a; i <= n; ++i)
#define per(i, a, n) for (int i = n; i >= a; --i)
#pragma endregion
const int maxn = 2e5 + 5;
int n, q;
string s[maxn];
vector<int> g[maxn];
int fa[maxn];
struct node {
    int id, k;
    node() {}
    node(int id, int k) : id(id), k(k) {}
};
vector<node> Q[maxn];
int sz[maxn], son[maxn], dep[maxn];
int res[maxn], flag;
map<string, int> cnt[maxn];
int cntt[maxn];
void dfs1(int u, int f) {
    sz[u] = 1, dep[u] = dep[f] + 1;
    for (auto v : g[u]) {
        if (v == f) continue;
        dfs1(v, u);
        sz[u] += sz[v];
        if (sz[v] > sz[son[u]]) son[u] = v;
    }
}
void count(int u, int f, int val) {
    cnt[dep[u]][s[u]] += val;
    if (val == 1 && cnt[dep[u]][s[u]] == 1) cntt[dep[u]]++;
    if (val == -1 && cnt[dep[u]][s[u]] == 0) cntt[dep[u]]--;
    for (auto v : g[u]) {
        if (v == f || v == flag) continue;
        count(v, u, val);
    }
}
void query(int u) {
    for (auto e : Q[u]) {
        int d = dep[u] + e.k;
        res[e.id] = cntt[d];
    }
}
void dfs(int u, int f, bool keep) {
    for (auto v : g[u]) {
        if (v == f || v == son[u]) continue;
        dfs(v, u, 0);
    }
    if (son[u]) {
        dfs(son[u], u, 1);
        flag = son[u];
    }
    count(u, f, 1);
    query(u);
    flag = 0;
    if (!keep) count(u, f, -1);
}
int main() {
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    cin >> n;
    rep(i, 1, n) {
        cin >> s[i] >> fa[i];
        if (fa[i]) g[fa[i]].push_back(i);
    }
    cin >> q;
    rep(i, 1, q) {
        int u, k;
        cin >> u >> k;
        Q[u].push_back(node(i, k));
    }
    rep(i, 1, n) if (!fa[i]) dfs1(i, 0), dfs(i, 0, 0);
    rep(i, 1, q) cout << res[i] << "\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值