在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
char map[8][8];
bool a[8];
int n, cnt;
void dfs(int i, int k)
{
if(k == 0)
{
cnt++;
return;
}
if(i >= n) return;
for(int j = 0; j < n; j++)
{
if(!a[j] && map[i][j] == '#')
{
a[j] = 1;
k--;
dfs(i+1, k);
k++;
a[j] = 0;
}
}
dfs(i+1, k);
}
int main()
{
while(1)
{
int k;
cin>>n>>k;
char str[9];
if(n == -1 && k == -1) break;
for(int i = 0; i < n; i++)
{
scanf("%s", str);
for(int j = 0; j < n; j++)
{
map[i][j] = str[j];
}
}
memset(a, 0, sizeof(a));
cnt = 0;
dfs(0, k);
cout<<cnt<<endl;
}
return 0;
}