需求数据
如果需要在redis中进行海量的数据存储,如果只有一台redis显然不能实现该功能.如果通过扩大内存的方式也不能达到要求.因为时间都浪费在寻址中. 如何有效的存储海量的数据呢???
Redis分片说明
说明:一般采用多台redis,分别保存用户的数据,从而实现内存数据的扩容.
对于用户而言:将redis分片当做一个整体,用户不在乎数据到底存储到哪里,只在乎能不能存.
分片主要的作用: 实现内存扩容.
Redis分片准备
创建目录
说明:在redis根目录中创建一个shards目录
分片搭建策略
说明:由于Redis启动是根据配置文件运行的,所以如果需要准备3台redis,则需要复制3份配置文件redis.conf. 端口号依次为6379/6380/6381
复制配置文件:
修改端口号:
根据配置文件名称,动态修改对应的端口即可.
启动redis:
redis-server 6379.conf
redis-server 6380.conf
redis-server 6381.conf
Redis分片入门案例
/**
* 测试Redis分片机制
* 业务思路:
* 用户需要通过API来操作3台redis.用户无需关心数据如何存储,
* 只需要了解数据能否存储即可.
* 思考: 2005的数据存储到哪台redis中
* redis分片是如何实现数据存储的!
*/
@Test
public void testShards(){
List<JedisShardInfo> list = new ArrayList<>();
list.add(new JedisShardInfo("192.168.126.129", 6379));
list.add(new JedisShardInfo("192.168.126.129", 6380));
list.add(new JedisShardInfo("192.168.126.129", 6381));
ShardedJedis shardedJedis = new ShardedJedis(list);
shardedJedis.set("2005", "redis分片学习");
System.out.println(shardedJedis.get("2005"));
}
一致性hash算法
算法介绍
一致性哈希算法在1997年由麻省理工学院提出,是一种特殊的哈希算法,目的是解决分布式缓存的问题。 [1] 在移除或者添加一个服务器时,能够尽可能小地改变已存在的服务请求与处理请求服务器之间的映射关系。一致性哈希解决了简单哈希算法在分布式哈希表( Distributed Hash Table,DHT) 中存在的动态伸缩等问题 [2] 。
常识介绍
1.常见hash多少位16进制数? 8位16进制数
2.16进制数取值有哪些 0-9 A-F 共16个数
3. hash的取值范围从 00000000 ~ FFFFFFFF (24)8
4. 上述取值的个数共有多少个??? 要求以2为底 2^32 幂