JDK1.8中HashMap源码追踪

几个常量

  1. 默认初始容量:default_initial_capacity=(1<<4)=16
  2. 最大容量:maximum_capacity=(1<<30);
  3. 树化阈值:treeify_threshold=8:当链表的长度达到这个数值后,要考虑树化
  4. 反树化值:untreeify_threshold=6:当树中的节点个数达到这个阈值之后,要考虑变为链表。
  5. 最小树化容量:min_treeify_capacity=64。     单个链表的节点个数达到8且table的长度达到64,会树化。  当单个链表的节点个数达到8,但是table的长度未达到64,会先扩容

几个变量

  1. Node<K,V>[ ] table:数组
  2. size:记录有效映射关系的对数,也是Entry对象的个数。
  3. threshold:阈值,当size达到阈值的时候,考虑扩容。
  4. loadFactor:加载因子,影响扩容的频率。

put

  1. 第一次添加:把table初始化为长度=16的数组,threshold设置为12。
  2. 如果不是第一次添加:① 考虑key是否重复,如果有重复就替换value,② 如果table[i]下面不是树,统计table[i]的节点个数,如果添加之前达到7个,考虑树化。 当单个链表的节点个数添加之前达到7,并且table的长度到达64,才会树化。 当单个链表的节点个数达到7,table的长度未达到64,先扩容。 ③ 如果table[i]下面已经是树,单独处理,直接把新的映射关系连接到树的叶子节点。 ④ 添加后size达到threshold,还要扩容,一旦扩容,就要调整所有映射关系的位置。
// 无参构造
public HashMap() {
      this.loadFactor = DEFAULT_LOAD_FACTOR; // 只做一件事:加载因子赋值为0.75, table=null, threshold=0
}

//put方法
public V put(K key,V value){
    return putVal(hash(key),key,value,false,true);   
}

//计算哈希值:用key去算hash值
static final int hash(Object key){//目的:干扰hashCode值。
    int h;            //int 32位
    //用key的hashCode值与 key的hashCode值高16位进行异或。即用key的哈希值的高16位与低16位进行异或干扰运算。
   //因为table.length比较小,右移16位,可以有机会用上高16位,降低冲突的概率。
    return (key==null)? 0:(h=key.hashCode())^(h>>>16);
}

// 添加元素的调用的方法。
public V putVal(int hash,K key,V value,boolean onlyIfAbsent,boolean evict){
    // onlyIfAbsent=true,不改变原有的值 ,
    Node<K,V>[] tab;    //数组
    Node<K,V> p;        //一个结点
    int n, i;           // n为数组的长度,i为下标。
    
    //如果table是空的,或长度为0,
    if ((tab = table) == null || (n = tab.length) == 0)
       n = (tab = resize()).length;                    //如果是第一次进入的时候,创建了一个长度为16的数组(n=16),阈值threshold设置为12。

    //  i=(n-1)& hash , 下标=数组长度-1 & hash 得到下标, p=tab[i], 
    if ((p = tab[i = (n - 1) & hash]) == null) // p==null说明table[i]的这个位置还没有放过映射关系,把新的映射关系直接放入table[i]。 p!=null是,p就是table[i]的第一个节点
            tab[i] = newNode(hash, key, value, null); // 创建了一个Node类型的新节点。新节点的next是空的。 
    else {
            Node<K,V> e; K k;
// P是table[i]的第一个结点,if第一个节点与新的映射关系的key重复,用e记录table[i]的第一个节点。
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;// e作为一个新的节点,做记录,还没做替换。
            else if (p instanceof TreeNode  //如果table[i]第一个节点是树节点,单独处理树节点
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {                  //table[i]的第一个节点不是树节点,也与新的映射关系的key不重复。
                for (int binCount = 0; ; ++binCount) {  //binCount记录table[i]下面的节点的个数。
//  如果p的下一个节点是空的,把新的节点连到table[i]的最后一个节点。
                    if ((e = p.next) == null) { 
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // >>> binCount达到7个的时候,要么扩容,要么树化。
                            treeifyBin(tab, hash);
                        break;
                    }
//如果key重复了,就跳出for循环。
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;  // 目的是为了找最后一个节点!
                }
            }
            if (e != null) { // e!=null则说明key有重复,就考虑替换原来的value
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }

        ++modCount;//元素个数增加
        if (++size > threshold)//size大于阈值的时候,就考虑扩容
            resize(); // 一旦扩容,就从重新调整所有映射关系的位置。

        //把新的映射关系加入到某个node的后面。
        afterNodeInsertion(evict);
        return null;
}



// resize()
final Node<K,V>[] resize() {
        Node<K,V>[] oldTab = table;                              // 原来的table数组。
        int oldCap = (oldTab == null) ? 0 : oldTab.length;       // 原来的容量。
        int oldThr = threshold;                                  //旧的阈值
        int newCap, newThr = 0;                                  //新容量,新阈值。
        if (oldCap > 0) {                                        // 说明原来不是空数组。
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                                     // newCap=旧的容量*2,新容量<最大数组容量限制。
                newThr = oldThr << 1; // double threshold
        }
        else if (oldThr > 0) // 原始的阈值=0; 
            newCap = oldThr;
        else { // 第一次put的时候,走到这个else方法中。               
                //新容量默认是初始容量16.
                //新阈值=默认的加载因子*默认的初始化容量。12
            newCap = DEFAULT_INITIAL_CAPACITY;                   
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }

        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }

        threshold = newThr;                              //阈值赋值为新阈值12.
                                                        //创建一个新数组,长度为16.
        Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        if (oldTab != null) {                   //第一次进来的时候,oldTab==null
// 把原来的table中的映射关系,倒腾到新的table中,
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {  //e是table下面的节点
                    oldTab[j] = null;         //把旧的table[j]位置清空。
                    if (e.next == null)       // 如果是最后一个节点。
                        newTab[e.hash & (newCap - 1)] = e; //重新计算e在新的table中的存储位置
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap); //把原来的树拆解,放到新的table中
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);//把table[i]下面的整个链表,重新挪动到新的链表中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }


Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
        return new Node<>(hash, key, value, next);
}

static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
}


  // 树化。
 final void treeifyBin(Node<K,V>[] tab, int hash) { 
        int n, index; Node<K,V> e;
//MIN_TREEIFY_CAPACITY =64。tab的长度没有达到64,
        if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
            resize();            //先扩容。
// 用e记录table[index]的节点的地址。
        else if ((e = tab[index = (n - 1) & hash]) != null) {  //index是下标。
            TreeNode<K,V> hd = null, tl = null;
            do {
                TreeNode<K,V> p = replacementTreeNode(e, null);// do-while把链表节点变成树节点。
                if (tl == null)
                    hd = p; 
                else {
                    p.prev = tl;
                    tl.next = p;
                }
                tl = p;
            } while ((e = e.next) != null);
            if ((tab[index] = hd) != null)
                hd.treeify(tab);
        }
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值