基于DTEmpower的空气源热泵供热系统回水温度预测

背景

热泵是将低位热能转化为高位热能的装置。空气源热泵将室外空气作为低温热源,利用空气中的热量达到产热或制冷的效果。根据是否有蓄热水箱,空气源热泵供热系统可以分为空气源热泵直接供热系统(ASHP)和空气源热泵蓄热系统(ASHP-HS)。ASHP系统由空气源热泵直接为用户提供热量,供暖末端可采用风机盘管、地板辐射等形式;ASHP-HS系统利用空气源热泵和循环热水为建筑复合供热,可在用电低谷时提升负荷加热循环用水,以备用电高峰时停用空气源热泵负荷带来的产热量不足。

本文主要研究ASHP-HS的调峰能力。ASHP-HS示意图如图1所示,其主要有三部分构成,分别为空气源热泵负荷(热源侧)、供热管网(输配侧)及用热终端散热(末端侧)。ASHP-HS运行时,空气源热泵机组运行制取热量,通过供热管网提供给末端用户取暖使用,同时循环水泵不断工作以实现热量持续供应。

图1  ASHP-HS系统示意图

在现代信息技术的加持下,ASHP-HS系统除了由上述基本设备组成运行系统外,实际运行过程中还存在大量的传感器与数据传输单元,能够实时采集ASHP-HS系统运行数据并上传至云端。同时其运行状态可以通过远程指令实时控制,以实现负荷的精准调节,这为后续利用其实际运行数据进行数字化建模提供了坚实的基础。

现阶段国内外的大部分研究中,空气源热泵供热系统的建模大多数采用的是ETP建模方法。该方法是直接将室内室外的储热、传热过程等效为热容和热阻,将温度等效为电压,将热流等效为电流,将热力学过程等效为电路进行求解的建模方法。该建模方法中储热和传热过程的热容、热阻是难以直接测量得到的,需要人为设定这些数值,而在大多数研究中仅采用了经验值代替真实值。这会导致原本就简化了各种细节问题的ETP模型更加不符合实际,因此用ETP模型拟合出的供热系统模型误差较大。针对上述问题,本文以空气源热泵供热系统作为最小单位,分析循环热水热力学过程并建立物理模型,推导出与该热力学模型有直接关系的可测物理量,利用DTEmpower进行模型求解,以供热系统的实际运行数据为训练集来源,得到空气源热泵供热系统的模型。同时将建模与后续调控相结合,提出了供热系统的响应能力评估指标。以威海市某空气源热泵供热站为例,验证基于DTEmpower的供热系统模型并计算其响应能力。

基于DTEmpower的空气源热泵供热系统回水温度预测

结合2.1节循环热水热力学过程可知,循环热水温度主要与热泵开机台数、室外环境温度、湿度、供回水压力有关,因此本报告选取2025年2月份威海市国核仿真中心实际数据,包含室外湿度、室外温度、总回水压力,总供水压力,运行中热泵数、总回水温度等运行数据,每分钟获取一组,一共43445组数据,对循环热水回水温度进行预测。整体建模流如图3所示。

图2  DTEmpower建模流程

输入变量为:室外湿度、室外温度、总回水压力,总供水压力,运行中热泵数。

输出变量为:总回水温度。

建模过程包含:数据读取,变量设定,空值处理,数据分析等环节。

模型训练精度如图3所示:

图3  DTEmpower模型训练精度

可以看出,所建立的模型能够较好拟合供水温度变化情况,其中MAPE(平均绝对百分比误差)为0.00,表明模型预测值与实际值之间的相对误差极小;(决定系数)为0.99,显示模型拟合优度极高;MAE(平均绝对误差)为0.07MSE(均方误差)为0.02,均体现了模型在预测总回水温度时的高精准度和可靠性。

为了验证建立模型的正确性,采用202528日、202531日数据进行验证,结果如图4-5所示:

图4 202528日回水温度实测值与回水温度预测值

图5 202531日回水温度实测值与回水温度预测值

可以看出基于DTEmpower建模的供热系统模型能够较好拟合实际回水温度运行曲线,且有效消除其中不正常的温度抖动

结语

本文根据空气源热泵负荷的实际运行方式,建立了供热系统的物理模型,根据传热学中的相关实验关联式和相似准则数,筛选出了该物理模型的影响因素;采用DTEmpower对物理模型进行求解,结果表明,所建立的供热系统回水温度模型能够较好预测实际过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值