Datawhale|LeetCodeTencent Task08(lc62,70, 78)

62 Unique Paths(M)

Description

在这里插入图片描述

Analysis & Solution

可以用动态规划解决,dp[i][j]表示从起点走到(i,j)位置可以选择的路径数目。
初始条件:dp[i][0]=dp[0][i]=1。
状态转移方程:dp[i][j]=dp[i-1][j]+dp[i][j-1]

Code

public int uniquePaths(int m, int n) {
    int[][] dp = new int[m][n];
    //第一列都是1
    for (int i = 0; i < m; i++) {
        dp[i][0] = 1;
    }
    //第一行都是1
    for (int i = 0; i < n; i++) {
        dp[0][i] = 1;
    }

    //这里是递推公式
    for (int i = 1; i < m; i++)
        for (int j = 1; j < n; j++)
            dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
    return dp[m - 1][n - 1];
}

时间复杂度:两层循环,时间复杂度为 O ( m n ) O(mn) O(mn)

70 Climbing Stairs(E)

Description

在这里插入图片描述

Analysis & Solution

经典的递归问题,可以用记录结果的递归减少重复计算,或者直接用动态规划求解。

Code

class Solution {
public:
    int climbStairs(int n) {
        int p = 0, q = 0, r = 1;
        for (int i = 1; i <= n; ++i) {
            p = q; 
            q = r; 
            r = p + q;
        }
        return r;
    }
};

时间复杂度:一次循环,时间复杂度为 O ( n ) O(n) O(n)

78 Subsets(M)

Description

在这里插入图片描述

Analysis & Solution

回溯法+DFS

Code

class Solution {
public:
    vector<vector<int>> ans={{}};
    void func(vector<int>& nums,vector<int>& t,int i)
    {
        for(int j=i;j<nums.size();j++)
        { 
            t.push_back(nums[j]);
            ans.push_back(t);
            func(nums,t,j+1);
            t.pop_back();
        }
    }
    vector<vector<int>> subsets(vector<int>& nums) {
        vector<int> t={};
        func(nums,t,0);
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值