- 博客(7)
- 收藏
- 关注
原创 微信小程序用户登录流程思路及主要代码
微信小程序用户登录流程思路及主要代码@TOC微信小程序用户登录流程思路由于微信官方不允许在刚进入小程序的时候,弹出用户登陆页面,需要在进入小程序后,用户主动点击才能进入登陆页面。此时,将会给小程序开发者在设计用户登陆页面时,带来一定的麻烦。现将我的微信小程序用户登陆的基本思路和流程记录下。小程序入口页面设计思路首先需要判断用户是否已经授权,需要从下面两个方面来判断。1、用户已授权登录此时,在用户登陆页面中,可以考虑将用户的信息存放在全局变量globalData.userInfo中。在进入小程序时
2020-09-22 23:02:52 2943 2
原创 机器学习自学之旅《逻辑回归算法》
逻辑回归算法逻辑回归主要是运用最大似然估计作为目标函数来确定回归系数。本文以激活函数g(z)=11+e−zg(z)=\frac {1} {1+e^{-z}}g(z)=1+e−z1为例,介绍具体思路。在线性回归算法中,回归函数为gθ(x)=xTθg_{\theta}(x)=x^T\thetagθ(x)=xTθ,为一条直线。而gθ(x)=11+e−xTθg_{\theta}(x)=\frac {1} {1+e^{-x^T\theta}}gθ(x)=1+e−xTθ1为一条曲线,且值域为(0,1)(0,
2020-07-01 10:52:16 117
原创 机器学习自学之旅《支持向量机SVM算法》
支持向量机SVM算法支持向量机算法主要用来将样本集X={(x1,y1),(x2,y2),...,(xi,yi)},yi∈{+1,−1}X=\{(x_1,y_1),(x_2,y_2),...,(x_i,y_i)\},y_i \in \{+1,-1\}X={(x1,y1),(x2,y2),...,(xi,yi)},yi∈{+1,−1}进行分类。如下图所示,存在多个平面可以将样本集进行分割,我们需要找到一个最优的分割平面。首先考虑分割平面ωTx+b=0\omega^{T}x+b=0ωTx
2020-05-25 22:24:58 164
原创 机器学习自学之旅《线性回归算法:最小二乘算法》
线性回归算法:最小二乘算法最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。《摘自Baidu百科》下面详细介绍最小二乘法在机器学习线性回归中的原理。样本特征集:n个样本,每个样本有m个特征,一个分类标签。X∈Rm×n,Y∈Rn×1X \in \mathbb R^{m \times n} ,Y\in \mathbb R^{n \times1}X∈Rm×n,Y∈
2020-05-21 22:49:47 205
原创 《机器学习自学实战之旅(三)》朴素贝叶斯算法的代码实现
先贴个代码,后期再进行注释import numpy as npdef loadDataSet(): """ 创建数据集 :return: 单词列表wordList, 所属类别classVec """ wordList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0...
2020-04-29 20:06:18 219
原创 《机器学习自学实战之旅(二)》决策树的代码实现
决策树其实基本原理不难,主要是N叉树的实现。1、节点的选择标准:代码使用最大香农熵增益,选取最优特征值2、根据节点值来生成子树:特征值的取值3、叶子节点未最后分类的结果使用决策树进行测试集分类时,遍历到叶子节点就是最后分类的结果import numpy as npimport mathimport tree_plotterdef createDataSet(): '''...
2020-04-25 21:03:37 177
原创 《机器学习自学实战之旅(一)》KNN基础实现代码
KNN基础实现代码记录下第一次实现的KNN代码'''此程序主要用来实现经典KNN算法《约会网站的配对效果》'''import osimport numpy as npdef file2matrix(filename): ''' 对filename中的数据进行采集 :param filename:数据集存放的目录 :return:返回数据 ''...
2020-04-24 22:36:38 251
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人